| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.48 | Structured version Visualization version GIF version | ||
| Description: Theorem *3.48 of [WhiteheadRussell] p. 114. (Contributed by NM, 28-Jan-1997.) |
| Ref | Expression |
|---|---|
| pm3.48 | ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . . 3 ⊢ (𝜓 → (𝜓 ∨ 𝜃)) | |
| 2 | 1 | imim2i 16 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜓 ∨ 𝜃))) |
| 3 | olc 868 | . . 3 ⊢ (𝜃 → (𝜓 ∨ 𝜃)) | |
| 4 | 3 | imim2i 16 | . 2 ⊢ ((𝜒 → 𝜃) → (𝜒 → (𝜓 ∨ 𝜃))) |
| 5 | 2, 4 | jaao 956 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: orim12d 966 tz7.48lem 8460 caubnd 15382 bj-nnfor 36773 |
| Copyright terms: Public domain | W3C validator |