MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.48 Structured version   Visualization version   GIF version

Theorem pm3.48 963
Description: Theorem *3.48 of [WhiteheadRussell] p. 114. (Contributed by NM, 28-Jan-1997.)
Assertion
Ref Expression
pm3.48 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))

Proof of Theorem pm3.48
StepHypRef Expression
1 orc 866 . . 3 (𝜓 → (𝜓𝜃))
21imim2i 16 . 2 ((𝜑𝜓) → (𝜑 → (𝜓𝜃)))
3 olc 867 . . 3 (𝜃 → (𝜓𝜃))
43imim2i 16 . 2 ((𝜒𝜃) → (𝜒 → (𝜓𝜃)))
52, 4jaao 954 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847
This theorem is referenced by:  orim12d  964  tz7.48lem  8099  caubnd  14801  bj-nnfor  34559
  Copyright terms: Public domain W3C validator