|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm3.48 | Structured version Visualization version GIF version | ||
| Description: Theorem *3.48 of [WhiteheadRussell] p. 114. (Contributed by NM, 28-Jan-1997.) | 
| Ref | Expression | 
|---|---|
| pm3.48 | ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orc 868 | . . 3 ⊢ (𝜓 → (𝜓 ∨ 𝜃)) | |
| 2 | 1 | imim2i 16 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜓 ∨ 𝜃))) | 
| 3 | olc 869 | . . 3 ⊢ (𝜃 → (𝜓 ∨ 𝜃)) | |
| 4 | 3 | imim2i 16 | . 2 ⊢ ((𝜒 → 𝜃) → (𝜒 → (𝜓 ∨ 𝜃))) | 
| 5 | 2, 4 | jaao 957 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 848 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 | 
| This theorem is referenced by: orim12d 967 tz7.48lem 8481 caubnd 15397 bj-nnfor 36751 | 
| Copyright terms: Public domain | W3C validator |