| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm5.32dav | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). Variant of pm5.32da 579. (Contributed by Zhi Wang, 30-Aug-2024.) |
| Ref | Expression |
|---|---|
| pm5.32dav.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| pm5.32dav | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32dav.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | pm5.32da 579 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| 3 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜃) ↔ (𝜃 ∧ 𝜓)) | |
| 5 | 2, 3, 4 | 3bitr3g 313 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |