Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version |
Description: More general version of 3bitr3i 301. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3id 285 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: notbid 318 cador 1610 cbvexdvaw 2043 cbvexdw 2337 cbvexd 2409 rexeqbidvv 3340 vtoclgft 3493 dfsbcq2 3720 unineq 4212 iindif2 5007 reusv2 5327 rabxfrd 5341 opeqex 5413 eqbrrdv 5705 eqbrrdiv 5706 opelco2g 5779 opelcnvg 5792 ralrnmptw 6979 ralrnmpt 6981 fliftcnv 7191 eusvobj2 7277 br1steqg 7862 br2ndeqg 7863 ottpos 8061 smoiso 8202 ercnv 8528 ordiso2 9283 cantnfrescl 9443 cantnfp1lem3 9447 cantnflem1b 9453 cantnflem1 9456 cnfcom 9467 cnfcom3lem 9470 djulf1o 9679 djurf1o 9680 carden2 9754 cardeq0 10317 axpownd 10366 fpwwe2lem8 10403 fzen 13282 hasheq0 14087 incexc2 15559 divalglem4 16114 divalglem8 16118 divalgb 16122 sadadd 16183 sadass 16187 smuval2 16198 smumul 16209 isprm3 16397 vdwmc 16688 imasleval 17261 acsfn2 17381 invsym2 17484 yoniso 18012 pmtrfmvdn0 19079 dprd2d2 19656 cmpfi 22568 xkoinjcn 22847 tgpconncomp 23273 iscau3 24451 mbfimaopnlem 24828 ellimc3 25052 eldv 25071 eltayl 25528 atandm3 26037 rmoxfrd 30850 opeldifid 30947 2ndpreima 31049 f1od2 31065 ordtconnlem1 31883 bnj1253 33006 usgrgt2cycl 33101 satfdm 33340 noetasuplem4 33948 wl-dral1d 35699 wl-sb8et 35717 wl-equsb3 35720 wl-sb8eut 35741 wl-ax11-lem8 35752 poimirlem2 35788 poimirlem16 35802 poimirlem18 35804 poimirlem21 35807 poimirlem22 35808 eqbrrdv2 36884 islpln5 37556 islvol5 37600 ntrneicls11 41707 radcnvrat 41939 trsbc 42167 ichnreuop 44935 ichreuopeq 44936 pm5.32dav 46150 exp12bd 46152 aacllem 46516 |
Copyright terms: Public domain | W3C validator |