Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version |
Description: More general version of 3bitr3i 300. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3id 284 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | bitrdi 286 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: notbid 317 cador 1611 cbvexdvaw 2043 cbvexdw 2338 cbvexd 2408 rexeqbidvv 3330 vtoclgft 3482 dfsbcq2 3714 unineq 4208 iindif2 5002 reusv2 5321 rabxfrd 5335 opeqex 5406 eqbrrdv 5692 eqbrrdiv 5693 opelco2g 5765 opelcnvg 5778 ralrnmptw 6952 ralrnmpt 6954 fliftcnv 7162 eusvobj2 7248 br1steqg 7826 br2ndeqg 7827 ottpos 8023 smoiso 8164 ercnv 8477 ordiso2 9204 cantnfrescl 9364 cantnfp1lem3 9368 cantnflem1b 9374 cantnflem1 9377 cnfcom 9388 cnfcom3lem 9391 djulf1o 9601 djurf1o 9602 carden2 9676 cardeq0 10239 axpownd 10288 fpwwe2lem8 10325 fzen 13202 hasheq0 14006 incexc2 15478 divalglem4 16033 divalglem8 16037 divalgb 16041 sadadd 16102 sadass 16106 smuval2 16117 smumul 16128 isprm3 16316 vdwmc 16607 imasleval 17169 acsfn2 17289 invsym2 17392 yoniso 17919 pmtrfmvdn0 18985 dprd2d2 19562 cmpfi 22467 xkoinjcn 22746 tgpconncomp 23172 iscau3 24347 mbfimaopnlem 24724 ellimc3 24948 eldv 24967 eltayl 25424 atandm3 25933 rmoxfrd 30742 opeldifid 30839 2ndpreima 30942 f1od2 30958 ordtconnlem1 31776 bnj1253 32897 usgrgt2cycl 32992 satfdm 33231 noetasuplem4 33866 wl-dral1d 35617 wl-sb8et 35635 wl-equsb3 35638 wl-sb8eut 35659 wl-ax11-lem8 35670 poimirlem2 35706 poimirlem16 35720 poimirlem18 35722 poimirlem21 35725 poimirlem22 35726 eqbrrdv2 36804 islpln5 37476 islvol5 37520 ntrneicls11 41589 radcnvrat 41821 trsbc 42049 ichnreuop 44812 ichreuopeq 44813 pm5.32dav 46027 exp12bd 46029 aacllem 46391 |
Copyright terms: Public domain | W3C validator |