| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version | ||
| Description: More general version of 3bitr3i 301. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| 3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
| 3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| 3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3id 285 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 5 | 3, 4 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 cador 1608 cbvexdvaw 2038 cbvexdw 2340 cbvexd 2412 cbvrexdva 3223 raleq 3302 rexeqbidvvOLD 3316 cbvrexdva2 3328 rexeqf 3333 cbvexeqsetf 3474 dfsbcq2 3768 unineq 4263 iindif2 5053 reusv2 5373 rabxfrd 5387 opeqex 5473 eqbrrdv 5772 eqbrrdiv 5773 opelco2g 5847 opelcnvg 5860 ralrnmptw 7083 ralrnmpt 7085 fliftcnv 7303 eusvobj2 7395 br1steqg 8008 br2ndeqg 8009 ottpos 8233 smoiso 8374 ercnv 8738 ordiso2 9527 cantnfrescl 9688 cantnfp1lem3 9692 cantnflem1b 9698 cantnflem1 9701 cnfcom 9712 cnfcom3lem 9715 djulf1o 9924 djurf1o 9925 carden2 9999 cardeq0 10564 axpownd 10613 fpwwe2lem8 10650 fzen 13556 hasheq0 14379 incexc2 15852 divalglem4 16413 divalglem8 16417 divalgb 16421 sadadd 16484 sadass 16488 smuval2 16499 smumul 16510 isprm3 16700 vdwmc 16996 imasleval 17553 acsfn2 17673 invsym2 17774 yoniso 18295 pmtrfmvdn0 19441 dprd2d2 20025 cmpfi 23344 xkoinjcn 23623 tgpconncomp 24049 iscau3 25228 mbfimaopnlem 25606 ellimc3 25830 eldv 25849 eltayl 26317 atandm3 26838 noetasuplem4 27698 rmoxfrd 32420 opeldifid 32526 2ndpreima 32631 f1od2 32644 ordtconnlem1 33901 bnj1253 34994 usgrgt2cycl 35098 satfdm 35337 wl-dral1d 37495 wl-sb8eft 37515 wl-sb8et 37517 wl-equsb3 37520 wl-sb8eut 37542 wl-sb8eutv 37543 wl-issetft 37546 wl-ax11-lem8 37556 poimirlem2 37592 poimirlem16 37606 poimirlem18 37608 poimirlem21 37611 poimirlem22 37612 eqbrrdv2 38827 islpln5 39500 islvol5 39544 ntrneicls11 44061 radcnvrat 44286 trsbc 44513 iindif2f 45132 ichnreuop 47434 ichreuopeq 47435 pm5.32dav 48721 exp12bd 48723 reuxfr1dd 48733 aacllem 49613 |
| Copyright terms: Public domain | W3C validator |