| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version | ||
| Description: More general version of 3bitr3i 301. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| 3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
| 3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| 3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3id 285 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 5 | 3, 4 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 cador 1608 cbvexdvaw 2039 cbvexdw 2337 cbvexd 2406 cbvrexdva 3210 raleq 3286 rexeqbidvvOLD 3300 cbvrexdva2 3312 rexeqf 3319 cbvexeqsetf 3451 dfsbcq2 3745 unineq 4239 iindif2 5026 reusv2 5342 rabxfrd 5356 opeqex 5441 eqbrrdv 5736 eqbrrdiv 5737 opelco2g 5810 opelcnvg 5823 ralrnmptw 7028 ralrnmpt 7030 fliftcnv 7248 eusvobj2 7341 br1steqg 7946 br2ndeqg 7947 ottpos 8169 smoiso 8285 ercnv 8646 ordiso2 9407 cantnfrescl 9572 cantnfp1lem3 9576 cantnflem1b 9582 cantnflem1 9585 cnfcom 9596 cnfcom3lem 9599 djulf1o 9808 djurf1o 9809 carden2 9883 cardeq0 10446 axpownd 10495 fpwwe2lem8 10532 fzen 13444 hasheq0 14270 incexc2 15745 divalglem4 16307 divalglem8 16311 divalgb 16315 sadadd 16378 sadass 16382 smuval2 16393 smumul 16404 isprm3 16594 vdwmc 16890 imasleval 17445 acsfn2 17569 invsym2 17670 yoniso 18191 pmtrfmvdn0 19341 dprd2d2 19925 cmpfi 23293 xkoinjcn 23572 tgpconncomp 23998 iscau3 25176 mbfimaopnlem 25554 ellimc3 25778 eldv 25797 eltayl 26265 atandm3 26786 noetasuplem4 27646 rmoxfrd 32437 opeldifid 32543 2ndpreima 32650 f1od2 32663 ordtconnlem1 33891 bnj1253 34984 usgrgt2cycl 35103 satfdm 35342 wl-dral1d 37505 wl-sb8eft 37525 wl-sb8et 37527 wl-equsb3 37530 wl-sb8eut 37552 wl-sb8eutv 37553 wl-issetft 37556 wl-ax11-lem8 37566 poimirlem2 37602 poimirlem16 37616 poimirlem18 37618 poimirlem21 37621 poimirlem22 37622 eqbrrdv2 38842 islpln5 39514 islvol5 39558 ntrneicls11 44063 radcnvrat 44287 trsbc 44514 iindif2f 45138 ichnreuop 47456 ichreuopeq 47457 pm5.32dav 48778 exp12bd 48780 reuxfr1dd 48791 aacllem 49786 |
| Copyright terms: Public domain | W3C validator |