| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version | ||
| Description: More general version of 3bitr3i 301. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| 3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
| 3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| 3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3id 285 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 5 | 3, 4 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 cador 1609 cbvexdvaw 2040 cbvexdw 2339 cbvexd 2408 cbvrexdva 3213 raleq 3289 rexeqbidvvOLD 3303 cbvrexdva2 3315 rexeqf 3322 cbvexeqsetf 3451 dfsbcq2 3739 unineq 4233 iindif2 5020 reusv2 5336 rabxfrd 5350 opeqex 5433 eqbrrdv 5728 eqbrrdiv 5729 opelco2g 5802 opelcnvg 5815 ralrnmptw 7022 ralrnmpt 7024 fliftcnv 7240 eusvobj2 7333 br1steqg 7938 br2ndeqg 7939 ottpos 8161 smoiso 8277 ercnv 8638 ordiso2 9396 cantnfrescl 9561 cantnfp1lem3 9565 cantnflem1b 9571 cantnflem1 9574 cnfcom 9585 cnfcom3lem 9588 djulf1o 9800 djurf1o 9801 carden2 9875 cardeq0 10438 axpownd 10487 fpwwe2lem8 10524 fzen 13436 hasheq0 14265 incexc2 15740 divalglem4 16302 divalglem8 16306 divalgb 16310 sadadd 16373 sadass 16377 smuval2 16388 smumul 16399 isprm3 16589 vdwmc 16885 imasleval 17440 acsfn2 17564 invsym2 17665 yoniso 18186 pmtrfmvdn0 19369 dprd2d2 19953 cmpfi 23318 xkoinjcn 23597 tgpconncomp 24023 iscau3 25200 mbfimaopnlem 25578 ellimc3 25802 eldv 25821 eltayl 26289 atandm3 26810 noetasuplem4 27670 rmoxfrd 32464 opeldifid 32571 2ndpreima 32681 f1od2 32694 ordtconnlem1 33929 bnj1253 35021 usgrgt2cycl 35166 satfdm 35405 wl-dral1d 37565 wl-sb8eft 37585 wl-sb8et 37587 wl-equsb3 37590 wl-sb8eut 37612 wl-sb8eutv 37613 wl-issetft 37616 wl-ax11-lem8 37626 poimirlem2 37662 poimirlem16 37676 poimirlem18 37678 poimirlem21 37681 poimirlem22 37682 eqbrrdv2 38902 islpln5 39574 islvol5 39618 ntrneicls11 44123 radcnvrat 44347 trsbc 44573 iindif2f 45197 ichnreuop 47503 ichreuopeq 47504 pm5.32dav 48825 exp12bd 48827 reuxfr1dd 48838 aacllem 49833 |
| Copyright terms: Public domain | W3C validator |