Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version |
Description: More general version of 3bitr3i 301. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3id 285 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: notbid 318 cador 1614 cbvexdvaw 2046 cbvexdw 2340 cbvexd 2410 rexeqbidvv 3338 vtoclgft 3491 dfsbcq2 3723 unineq 4217 iindif2 5011 reusv2 5330 rabxfrd 5344 opeqex 5416 eqbrrdv 5702 eqbrrdiv 5703 opelco2g 5775 opelcnvg 5788 ralrnmptw 6967 ralrnmpt 6969 fliftcnv 7178 eusvobj2 7264 br1steqg 7846 br2ndeqg 7847 ottpos 8043 smoiso 8184 ercnv 8502 ordiso2 9252 cantnfrescl 9412 cantnfp1lem3 9416 cantnflem1b 9422 cantnflem1 9425 cnfcom 9436 cnfcom3lem 9439 djulf1o 9671 djurf1o 9672 carden2 9746 cardeq0 10309 axpownd 10358 fpwwe2lem8 10395 fzen 13272 hasheq0 14076 incexc2 15548 divalglem4 16103 divalglem8 16107 divalgb 16111 sadadd 16172 sadass 16176 smuval2 16187 smumul 16198 isprm3 16386 vdwmc 16677 imasleval 17250 acsfn2 17370 invsym2 17473 yoniso 18001 pmtrfmvdn0 19068 dprd2d2 19645 cmpfi 22557 xkoinjcn 22836 tgpconncomp 23262 iscau3 24440 mbfimaopnlem 24817 ellimc3 25041 eldv 25060 eltayl 25517 atandm3 26026 rmoxfrd 30837 opeldifid 30934 2ndpreima 31036 f1od2 31052 ordtconnlem1 31870 bnj1253 32993 usgrgt2cycl 33088 satfdm 33327 noetasuplem4 33935 wl-dral1d 35686 wl-sb8et 35704 wl-equsb3 35707 wl-sb8eut 35728 wl-ax11-lem8 35739 poimirlem2 35775 poimirlem16 35789 poimirlem18 35791 poimirlem21 35794 poimirlem22 35795 eqbrrdv2 36873 islpln5 37545 islvol5 37589 ntrneicls11 41670 radcnvrat 41902 trsbc 42130 ichnreuop 44893 ichreuopeq 44894 pm5.32dav 46108 exp12bd 46110 aacllem 46474 |
Copyright terms: Public domain | W3C validator |