![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version |
Description: More general version of 3bitr3i 301. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3id 285 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: notbid 318 cador 1605 cbvexdvaw 2038 cbvexdw 2345 cbvexd 2416 cbvrexdva 3246 raleq 3331 rexeqbidvvOLD 3345 cbvrexdva2 3357 rexeqf 3362 cbvexeqsetf 3503 dfsbcq2 3807 unineq 4307 iindif2 5100 reusv2 5421 rabxfrd 5435 opeqex 5517 eqbrrdv 5817 eqbrrdiv 5818 opelco2g 5892 opelcnvg 5905 ralrnmptw 7128 ralrnmpt 7130 fliftcnv 7347 eusvobj2 7440 br1steqg 8052 br2ndeqg 8053 ottpos 8277 smoiso 8418 ercnv 8784 ordiso2 9584 cantnfrescl 9745 cantnfp1lem3 9749 cantnflem1b 9755 cantnflem1 9758 cnfcom 9769 cnfcom3lem 9772 djulf1o 9981 djurf1o 9982 carden2 10056 cardeq0 10621 axpownd 10670 fpwwe2lem8 10707 fzen 13601 hasheq0 14412 incexc2 15886 divalglem4 16444 divalglem8 16448 divalgb 16452 sadadd 16513 sadass 16517 smuval2 16528 smumul 16539 isprm3 16730 vdwmc 17025 imasleval 17601 acsfn2 17721 invsym2 17824 yoniso 18355 pmtrfmvdn0 19504 dprd2d2 20088 cmpfi 23437 xkoinjcn 23716 tgpconncomp 24142 iscau3 25331 mbfimaopnlem 25709 ellimc3 25934 eldv 25953 eltayl 26419 atandm3 26939 noetasuplem4 27799 rmoxfrd 32521 opeldifid 32621 2ndpreima 32719 f1od2 32735 ordtconnlem1 33870 bnj1253 34993 usgrgt2cycl 35098 satfdm 35337 wl-dral1d 37485 wl-sb8eft 37505 wl-sb8et 37507 wl-equsb3 37510 wl-sb8eut 37532 wl-sb8eutv 37533 wl-issetft 37536 wl-ax11-lem8 37546 poimirlem2 37582 poimirlem16 37596 poimirlem18 37598 poimirlem21 37601 poimirlem22 37602 eqbrrdv2 38819 islpln5 39492 islvol5 39536 ntrneicls11 44052 radcnvrat 44283 trsbc 44511 iindif2f 45065 ichnreuop 47346 ichreuopeq 47347 pm5.32dav 48527 exp12bd 48529 aacllem 48895 |
Copyright terms: Public domain | W3C validator |