![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version |
Description: More general version of 3bitr3i 300. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3id 284 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | bitrdi 286 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: notbid 317 cador 1607 cbvexdvaw 2040 cbvexdw 2333 cbvexd 2405 cbvrexdva 3235 raleq 3320 rexeqbidvvOLD 3330 cbvrexdva2 3343 rexeqf 3348 issetft 3486 dfsbcq2 3779 unineq 4276 iindif2 5079 reusv2 5400 rabxfrd 5414 opeqex 5497 eqbrrdv 5792 eqbrrdiv 5793 opelco2g 5866 opelcnvg 5879 ralrnmptw 7094 ralrnmpt 7096 fliftcnv 7310 eusvobj2 7403 br1steqg 7999 br2ndeqg 8000 ottpos 8223 smoiso 8364 ercnv 8726 ordiso2 9512 cantnfrescl 9673 cantnfp1lem3 9677 cantnflem1b 9683 cantnflem1 9686 cnfcom 9697 cnfcom3lem 9700 djulf1o 9909 djurf1o 9910 carden2 9984 cardeq0 10549 axpownd 10598 fpwwe2lem8 10635 fzen 13522 hasheq0 14327 incexc2 15788 divalglem4 16343 divalglem8 16347 divalgb 16351 sadadd 16412 sadass 16416 smuval2 16427 smumul 16438 isprm3 16624 vdwmc 16915 imasleval 17491 acsfn2 17611 invsym2 17714 yoniso 18242 pmtrfmvdn0 19371 dprd2d2 19955 cmpfi 23132 xkoinjcn 23411 tgpconncomp 23837 iscau3 25026 mbfimaopnlem 25404 ellimc3 25628 eldv 25647 eltayl 26108 atandm3 26619 noetasuplem4 27475 rmoxfrd 32000 opeldifid 32097 2ndpreima 32196 f1od2 32213 ordtconnlem1 33202 bnj1253 34326 usgrgt2cycl 34419 satfdm 34658 wl-dral1d 36703 wl-sb8et 36721 wl-equsb3 36724 wl-sb8eut 36745 wl-issetft 36747 wl-ax11-lem8 36757 poimirlem2 36793 poimirlem16 36807 poimirlem18 36809 poimirlem21 36812 poimirlem22 36813 eqbrrdv2 38036 islpln5 38709 islvol5 38753 ntrneicls11 43143 radcnvrat 43375 trsbc 43603 iindif2f 44155 ichnreuop 46438 ichreuopeq 46439 pm5.32dav 47566 exp12bd 47568 aacllem 47935 |
Copyright terms: Public domain | W3C validator |