![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version |
Description: More general version of 3bitr3i 301. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3id 285 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: notbid 318 cador 1610 cbvexdvaw 2043 cbvexdw 2336 cbvexd 2408 cbvrexdva 3238 raleq 3323 rexeqbidvvOLD 3333 cbvrexdva2 3346 rexeqf 3351 vtoclgft 3541 dfsbcq2 3781 unineq 4278 iindif2 5081 reusv2 5402 rabxfrd 5416 opeqex 5499 eqbrrdv 5794 eqbrrdiv 5795 opelco2g 5868 opelcnvg 5881 ralrnmptw 7096 ralrnmpt 7098 fliftcnv 7308 eusvobj2 7401 br1steqg 7997 br2ndeqg 7998 ottpos 8221 smoiso 8362 ercnv 8724 ordiso2 9510 cantnfrescl 9671 cantnfp1lem3 9675 cantnflem1b 9681 cantnflem1 9684 cnfcom 9695 cnfcom3lem 9698 djulf1o 9907 djurf1o 9908 carden2 9982 cardeq0 10547 axpownd 10596 fpwwe2lem8 10633 fzen 13518 hasheq0 14323 incexc2 15784 divalglem4 16339 divalglem8 16343 divalgb 16347 sadadd 16408 sadass 16412 smuval2 16423 smumul 16434 isprm3 16620 vdwmc 16911 imasleval 17487 acsfn2 17607 invsym2 17710 yoniso 18238 pmtrfmvdn0 19330 dprd2d2 19914 cmpfi 22912 xkoinjcn 23191 tgpconncomp 23617 iscau3 24795 mbfimaopnlem 25172 ellimc3 25396 eldv 25415 eltayl 25872 atandm3 26383 noetasuplem4 27239 rmoxfrd 31733 opeldifid 31830 2ndpreima 31929 f1od2 31946 ordtconnlem1 32904 bnj1253 34028 usgrgt2cycl 34121 satfdm 34360 wl-dral1d 36400 wl-sb8et 36418 wl-equsb3 36421 wl-sb8eut 36442 wl-issetft 36444 wl-ax11-lem8 36454 poimirlem2 36490 poimirlem16 36504 poimirlem18 36506 poimirlem21 36509 poimirlem22 36510 eqbrrdv2 37733 islpln5 38406 islvol5 38450 ntrneicls11 42841 radcnvrat 43073 trsbc 43301 iindif2f 43854 ichnreuop 46140 ichreuopeq 46141 pm5.32dav 47479 exp12bd 47481 aacllem 47848 |
Copyright terms: Public domain | W3C validator |