| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version | ||
| Description: More general version of 3bitr3i 301. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| 3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
| 3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| 3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3id 285 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 5 | 3, 4 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 cador 1608 cbvexdvaw 2039 cbvexdw 2337 cbvexd 2407 cbvrexdva 3219 raleq 3298 rexeqbidvvOLD 3312 cbvrexdva2 3324 rexeqf 3332 cbvexeqsetf 3465 dfsbcq2 3759 unineq 4254 iindif2 5044 reusv2 5361 rabxfrd 5375 opeqex 5461 eqbrrdv 5759 eqbrrdiv 5760 opelco2g 5834 opelcnvg 5847 ralrnmptw 7069 ralrnmpt 7071 fliftcnv 7289 eusvobj2 7382 br1steqg 7993 br2ndeqg 7994 ottpos 8218 smoiso 8334 ercnv 8695 ordiso2 9475 cantnfrescl 9636 cantnfp1lem3 9640 cantnflem1b 9646 cantnflem1 9649 cnfcom 9660 cnfcom3lem 9663 djulf1o 9872 djurf1o 9873 carden2 9947 cardeq0 10512 axpownd 10561 fpwwe2lem8 10598 fzen 13509 hasheq0 14335 incexc2 15811 divalglem4 16373 divalglem8 16377 divalgb 16381 sadadd 16444 sadass 16448 smuval2 16459 smumul 16470 isprm3 16660 vdwmc 16956 imasleval 17511 acsfn2 17631 invsym2 17732 yoniso 18253 pmtrfmvdn0 19399 dprd2d2 19983 cmpfi 23302 xkoinjcn 23581 tgpconncomp 24007 iscau3 25185 mbfimaopnlem 25563 ellimc3 25787 eldv 25806 eltayl 26274 atandm3 26795 noetasuplem4 27655 rmoxfrd 32429 opeldifid 32535 2ndpreima 32638 f1od2 32651 ordtconnlem1 33921 bnj1253 35014 usgrgt2cycl 35124 satfdm 35363 wl-dral1d 37526 wl-sb8eft 37546 wl-sb8et 37548 wl-equsb3 37551 wl-sb8eut 37573 wl-sb8eutv 37574 wl-issetft 37577 wl-ax11-lem8 37587 poimirlem2 37623 poimirlem16 37637 poimirlem18 37639 poimirlem21 37642 poimirlem22 37643 eqbrrdv2 38863 islpln5 39536 islvol5 39580 ntrneicls11 44086 radcnvrat 44310 trsbc 44537 iindif2f 45161 ichnreuop 47477 ichreuopeq 47478 pm5.32dav 48786 exp12bd 48788 reuxfr1dd 48799 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |