![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version |
Description: More general version of 3bitr3i 301. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3id 285 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: notbid 318 cador 1604 cbvexdvaw 2035 cbvexdw 2339 cbvexd 2410 cbvrexdva 3237 raleq 3320 rexeqbidvvOLD 3334 cbvrexdva2 3346 rexeqf 3351 cbvexeqsetf 3492 dfsbcq2 3793 unineq 4293 iindif2 5081 reusv2 5408 rabxfrd 5422 opeqex 5507 eqbrrdv 5805 eqbrrdiv 5806 opelco2g 5880 opelcnvg 5893 ralrnmptw 7113 ralrnmpt 7115 fliftcnv 7330 eusvobj2 7422 br1steqg 8034 br2ndeqg 8035 ottpos 8259 smoiso 8400 ercnv 8764 ordiso2 9552 cantnfrescl 9713 cantnfp1lem3 9717 cantnflem1b 9723 cantnflem1 9726 cnfcom 9737 cnfcom3lem 9740 djulf1o 9949 djurf1o 9950 carden2 10024 cardeq0 10589 axpownd 10638 fpwwe2lem8 10675 fzen 13577 hasheq0 14398 incexc2 15870 divalglem4 16429 divalglem8 16433 divalgb 16437 sadadd 16500 sadass 16504 smuval2 16515 smumul 16526 isprm3 16716 vdwmc 17011 imasleval 17587 acsfn2 17707 invsym2 17810 yoniso 18341 pmtrfmvdn0 19494 dprd2d2 20078 cmpfi 23431 xkoinjcn 23710 tgpconncomp 24136 iscau3 25325 mbfimaopnlem 25703 ellimc3 25928 eldv 25947 eltayl 26415 atandm3 26935 noetasuplem4 27795 rmoxfrd 32520 opeldifid 32618 2ndpreima 32722 f1od2 32738 ordtconnlem1 33884 bnj1253 35009 usgrgt2cycl 35114 satfdm 35353 wl-dral1d 37511 wl-sb8eft 37531 wl-sb8et 37533 wl-equsb3 37536 wl-sb8eut 37558 wl-sb8eutv 37559 wl-issetft 37562 wl-ax11-lem8 37572 poimirlem2 37608 poimirlem16 37622 poimirlem18 37624 poimirlem21 37627 poimirlem22 37628 eqbrrdv2 38844 islpln5 39517 islvol5 39561 ntrneicls11 44079 radcnvrat 44309 trsbc 44537 iindif2f 45102 ichnreuop 47396 ichreuopeq 47397 pm5.32dav 48642 exp12bd 48644 reuxfr1dd 48654 aacllem 49031 |
Copyright terms: Public domain | W3C validator |