| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version | ||
| Description: More general version of 3bitr3i 301. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| 3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
| 3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| 3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3id 285 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 5 | 3, 4 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 cador 1608 cbvexdvaw 2039 cbvexdw 2337 cbvexd 2406 cbvrexdva 3218 raleq 3296 rexeqbidvvOLD 3310 cbvrexdva2 3322 rexeqf 3330 cbvexeqsetf 3462 dfsbcq2 3756 unineq 4251 iindif2 5041 reusv2 5358 rabxfrd 5372 opeqex 5458 eqbrrdv 5756 eqbrrdiv 5757 opelco2g 5831 opelcnvg 5844 ralrnmptw 7066 ralrnmpt 7068 fliftcnv 7286 eusvobj2 7379 br1steqg 7990 br2ndeqg 7991 ottpos 8215 smoiso 8331 ercnv 8692 ordiso2 9468 cantnfrescl 9629 cantnfp1lem3 9633 cantnflem1b 9639 cantnflem1 9642 cnfcom 9653 cnfcom3lem 9656 djulf1o 9865 djurf1o 9866 carden2 9940 cardeq0 10505 axpownd 10554 fpwwe2lem8 10591 fzen 13502 hasheq0 14328 incexc2 15804 divalglem4 16366 divalglem8 16370 divalgb 16374 sadadd 16437 sadass 16441 smuval2 16452 smumul 16463 isprm3 16653 vdwmc 16949 imasleval 17504 acsfn2 17624 invsym2 17725 yoniso 18246 pmtrfmvdn0 19392 dprd2d2 19976 cmpfi 23295 xkoinjcn 23574 tgpconncomp 24000 iscau3 25178 mbfimaopnlem 25556 ellimc3 25780 eldv 25799 eltayl 26267 atandm3 26788 noetasuplem4 27648 rmoxfrd 32422 opeldifid 32528 2ndpreima 32631 f1od2 32644 ordtconnlem1 33914 bnj1253 35007 usgrgt2cycl 35117 satfdm 35356 wl-dral1d 37519 wl-sb8eft 37539 wl-sb8et 37541 wl-equsb3 37544 wl-sb8eut 37566 wl-sb8eutv 37567 wl-issetft 37570 wl-ax11-lem8 37580 poimirlem2 37616 poimirlem16 37630 poimirlem18 37632 poimirlem21 37635 poimirlem22 37636 eqbrrdv2 38856 islpln5 39529 islvol5 39573 ntrneicls11 44079 radcnvrat 44303 trsbc 44530 iindif2f 45154 ichnreuop 47473 ichreuopeq 47474 pm5.32dav 48782 exp12bd 48784 reuxfr1dd 48795 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |