| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version | ||
| Description: More general version of 3bitr3i 301. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| 3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
| 3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| 3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3id 285 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 5 | 3, 4 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 cador 1609 cbvexdvaw 2040 cbvexdw 2341 cbvexd 2410 cbvrexdva 3214 raleq 3290 rexeqbidvvOLD 3304 cbvrexdva2 3316 rexeqf 3323 cbvexeqsetf 3452 dfsbcq2 3740 unineq 4237 iindif2 5029 reusv2 5345 rabxfrd 5359 opeqex 5443 eqbrrdv 5739 eqbrrdiv 5740 opelco2g 5813 opelcnvg 5826 ralrnmptw 7036 ralrnmpt 7038 fliftcnv 7254 eusvobj2 7347 br1steqg 7952 br2ndeqg 7953 ottpos 8175 smoiso 8291 ercnv 8652 ordiso2 9412 cantnfrescl 9577 cantnfp1lem3 9581 cantnflem1b 9587 cantnflem1 9590 cnfcom 9601 cnfcom3lem 9604 djulf1o 9816 djurf1o 9817 carden2 9891 cardeq0 10454 axpownd 10503 fpwwe2lem8 10540 fzen 13448 hasheq0 14277 incexc2 15752 divalglem4 16314 divalglem8 16318 divalgb 16322 sadadd 16385 sadass 16389 smuval2 16400 smumul 16411 isprm3 16601 vdwmc 16897 imasleval 17453 acsfn2 17577 invsym2 17678 yoniso 18199 pmtrfmvdn0 19382 dprd2d2 19966 cmpfi 23343 xkoinjcn 23622 tgpconncomp 24048 iscau3 25225 mbfimaopnlem 25603 ellimc3 25827 eldv 25846 eltayl 26314 atandm3 26835 noetasuplem4 27695 rmoxfrd 32493 opeldifid 32600 2ndpreima 32713 f1od2 32726 ordtconnlem1 34009 bnj1253 35101 usgrgt2cycl 35246 satfdm 35485 wl-dral1d 37648 wl-sb8eft 37668 wl-sb8et 37670 wl-equsb3 37673 wl-sb8eut 37695 wl-sb8eutv 37696 wl-issetft 37699 poimirlem2 37735 poimirlem16 37749 poimirlem18 37751 poimirlem21 37754 poimirlem22 37755 eqbrrdv2 39035 islpln5 39707 islvol5 39751 ntrneicls11 44247 radcnvrat 44471 trsbc 44697 iindif2f 45320 ichnreuop 47634 ichreuopeq 47635 pm5.32dav 48955 exp12bd 48957 reuxfr1dd 48968 aacllem 49962 |
| Copyright terms: Public domain | W3C validator |