| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version | ||
| Description: More general version of 3bitr3i 301. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| 3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
| 3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| 3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3id 285 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 5 | 3, 4 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 cador 1608 cbvexdvaw 2039 cbvexdw 2337 cbvexd 2406 cbvrexdva 3216 raleq 3293 rexeqbidvvOLD 3307 cbvrexdva2 3319 rexeqf 3327 cbvexeqsetf 3459 dfsbcq2 3753 unineq 4247 iindif2 5036 reusv2 5353 rabxfrd 5367 opeqex 5453 eqbrrdv 5747 eqbrrdiv 5748 opelco2g 5821 opelcnvg 5834 ralrnmptw 7048 ralrnmpt 7050 fliftcnv 7268 eusvobj2 7361 br1steqg 7969 br2ndeqg 7970 ottpos 8192 smoiso 8308 ercnv 8669 ordiso2 9444 cantnfrescl 9605 cantnfp1lem3 9609 cantnflem1b 9615 cantnflem1 9618 cnfcom 9629 cnfcom3lem 9632 djulf1o 9841 djurf1o 9842 carden2 9916 cardeq0 10481 axpownd 10530 fpwwe2lem8 10567 fzen 13478 hasheq0 14304 incexc2 15780 divalglem4 16342 divalglem8 16346 divalgb 16350 sadadd 16413 sadass 16417 smuval2 16428 smumul 16439 isprm3 16629 vdwmc 16925 imasleval 17480 acsfn2 17600 invsym2 17701 yoniso 18222 pmtrfmvdn0 19368 dprd2d2 19952 cmpfi 23271 xkoinjcn 23550 tgpconncomp 23976 iscau3 25154 mbfimaopnlem 25532 ellimc3 25756 eldv 25775 eltayl 26243 atandm3 26764 noetasuplem4 27624 rmoxfrd 32395 opeldifid 32501 2ndpreima 32604 f1od2 32617 ordtconnlem1 33887 bnj1253 34980 usgrgt2cycl 35090 satfdm 35329 wl-dral1d 37492 wl-sb8eft 37512 wl-sb8et 37514 wl-equsb3 37517 wl-sb8eut 37539 wl-sb8eutv 37540 wl-issetft 37543 wl-ax11-lem8 37553 poimirlem2 37589 poimirlem16 37603 poimirlem18 37605 poimirlem21 37608 poimirlem22 37609 eqbrrdv2 38829 islpln5 39502 islvol5 39546 ntrneicls11 44052 radcnvrat 44276 trsbc 44503 iindif2f 45127 ichnreuop 47446 ichreuopeq 47447 pm5.32dav 48755 exp12bd 48757 reuxfr1dd 48768 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |