Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm5.32dra Structured version   Visualization version   GIF version

Theorem pm5.32dra 46028
Description: Reverse distribution of implication over biconditional (deduction form). (Contributed by Zhi Wang, 6-Sep-2024.)
Hypothesis
Ref Expression
pm5.32dra.1 (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))
Assertion
Ref Expression
pm5.32dra ((𝜑𝜓) → (𝜒𝜃))

Proof of Theorem pm5.32dra
StepHypRef Expression
1 pm5.32dra.1 . . 3 (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))
2 pm5.32 573 . . 3 ((𝜓 → (𝜒𝜃)) ↔ ((𝜓𝜒) ↔ (𝜓𝜃)))
31, 2sylibr 233 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
43imp 406 1 ((𝜑𝜓) → (𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  clddisj  46085
  Copyright terms: Public domain W3C validator