Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm5.32dra | Structured version Visualization version GIF version |
Description: Reverse distribution of implication over biconditional (deduction form). (Contributed by Zhi Wang, 6-Sep-2024.) |
Ref | Expression |
---|---|
pm5.32dra.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Ref | Expression |
---|---|
pm5.32dra | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32dra.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | |
2 | pm5.32 574 | . . 3 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
4 | 3 | imp 407 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: clddisj 46197 |
Copyright terms: Public domain | W3C validator |