Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > re1tbw1 | Structured version Visualization version GIF version |
Description: tbw-ax1 1706 rederived from merco2 1742. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
re1tbw1 | ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mercolem8 1750 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜓 → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))))) | |
2 | mercolem3 1745 | . . 3 ⊢ ((𝜓 → 𝜒) → (𝜓 → (𝜑 → 𝜒))) | |
3 | mercolem6 1748 | . . 3 ⊢ (((𝜑 → 𝜓) → ((𝜓 → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))))) → ((𝜓 → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))))) | |
4 | 1, 2, 3 | mpsyl 68 | . 2 ⊢ ((𝜓 → 𝜒) → ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒)))) |
5 | mercolem6 1748 | . 2 ⊢ (((𝜓 → 𝜒) → ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒)))) → ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒)))) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1544 df-fal 1554 |
This theorem is referenced by: re1tbw4 1754 |
Copyright terms: Public domain | W3C validator |