MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an132 Structured version   Visualization version   GIF version

Theorem syl3an132 1166
Description: syl2an 596 with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016.)
Hypotheses
Ref Expression
syl3an132.1 (𝜑𝜓)
syl3an132.2 ((𝜒𝜃) → 𝜏)
syl3an132.3 ((𝜓𝜏) → 𝜂)
Assertion
Ref Expression
syl3an132 ((𝜑𝜒𝜃) → 𝜂)

Proof of Theorem syl3an132
StepHypRef Expression
1 syl3an132.1 . . 3 (𝜑𝜓)
2 syl3an132.2 . . 3 ((𝜒𝜃) → 𝜏)
3 syl3an132.3 . . 3 ((𝜓𝜏) → 𝜂)
41, 2, 3syl2an 596 . 2 ((𝜑 ∧ (𝜒𝜃)) → 𝜂)
543impb 1114 1 ((𝜑𝜒𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  2f1fvneq  7252
  Copyright terms: Public domain W3C validator