| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3an3 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| syl3an3.1 | ⊢ (𝜑 → 𝜃) |
| syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | 3anim3i 1154 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | syl3an3.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3l 1181 3adant3r 1182 syl3an3b 1407 syl3an3br 1410 disji 5080 ovmpox 7506 ovmpoga 7507 wrecseq123 8253 dif1en 9084 dif1enOLD 9086 domtrfil 9116 ssdomfi2 9121 domnsymfi 9124 sdomdomtrfi 9125 domsdomtrfi 9126 phplem2 9129 php 9131 php3 9133 findcard3 9187 unbnn2 9202 axdc3lem4 10366 axdclem2 10433 gruiin 10723 gruen 10725 divass 11815 ltmul2 11993 xleadd1 13175 xltadd2 13177 xlemul1 13210 xltmul2 13213 elfzo 13582 modcyc2 13829 faclbnd5 14223 relexprel 14964 subcn2 15520 mulcn2 15521 ndvdsp1 16340 gcddiv 16480 lcmneg 16532 lubel 18438 mndpfsupp 18659 gsumccatsn 18735 mulgaddcom 18995 oddvdsi 19445 odcong 19446 odeq 19447 efgsp1 19634 lspsnss 20911 rnglidlrng 21172 lindsmm2 21754 mulmarep1el 22475 mdetunilem4 22518 iuncld 22948 neips 23016 opnneip 23022 comppfsc 23435 hmeof1o2 23666 ordthmeo 23705 ufinffr 23832 elfm3 23853 utop3cls 24155 blcntrps 24316 blcntr 24317 neibl 24405 blnei 24406 metss 24412 stdbdmetval 24418 prdsms 24435 blval2 24466 lmmbr 25174 lmmbr2 25175 iscau2 25193 bcthlem1 25240 bcthlem3 25242 bcthlem4 25243 dvn2bss 25848 dvfsumrlim 25954 dvfsumrlim2 25955 cxpexpz 26592 cxpsub 26607 cxpcom 26664 relogbzexp 26702 sltsub1 28003 1ewlk 30077 1pthon2ve 30116 upgr4cycl4dv4e 30147 konigsbergssiedgwpr 30211 dlwwlknondlwlknonf1o 30327 hvaddsub12 31000 hvaddsubass 31003 hvsubdistr1 31011 hvsubcan 31036 hhssnv 31226 spanunsni 31541 homco1 31763 homulass 31764 hoadddir 31766 hosubdi 31770 hoaddsubass 31777 hosubsub4 31780 lnopmi 31962 adjlnop 32048 mdsymlem5 32369 disjif 32540 disjif2 32543 ind0 32814 sigaclfu 34088 signstfvc 34544 bnj544 34863 bnj561 34872 bnj562 34873 bnj594 34881 swrdrevpfx 35092 satfvsuc 35336 satfvsucsuc 35340 clsint2 36305 weiunso 36442 weiunwe 36445 ftc1anclem6 37680 isbnd2 37765 blbnd 37769 isdrngo2 37940 atnem0 39299 hlrelat5N 39383 ltrnel 40121 ltrnat 40122 ltrncnvat 40123 nnproddivdvdsd 41976 dvdsexpnn 42309 jm2.22 42971 jm2.23 42972 dvconstbi 44310 eelT11 44683 eelT12 44685 eelTT1 44686 eelT01 44687 eel0T1 44688 liminfvalxr 45768 grlimprclnbgr 47984 rmfsupp 48361 scmfsupp 48363 dignn0flhalflem2 48605 rrx2vlinest 48730 rrx2linesl 48732 |
| Copyright terms: Public domain | W3C validator |