![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl3an3 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
Ref | Expression |
---|---|
syl3an3.1 | ⊢ (𝜑 → 𝜃) |
syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | 3anim3i 1155 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | syl3an3.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3adant3l 1181 3adant3r 1182 syl3an3b 1406 syl3an3br 1409 disji 5132 ovmpox 7561 ovmpoga 7562 wrecseq123 8299 wfrlem14OLD 8322 dif1en 9160 dif1enOLD 9162 domtrfil 9195 ssdomfi2 9200 domnsymfi 9203 sdomdomtrfi 9204 domsdomtrfi 9205 phplem2 9208 php 9210 php3 9212 findcard3 9285 unbnn2 9300 axdc3lem4 10448 axdclem2 10515 gruiin 10805 gruen 10807 divass 11890 ltmul2 12065 xleadd1 13234 xltadd2 13236 xlemul1 13269 xltmul2 13272 elfzo 13634 modcyc2 13872 faclbnd5 14258 relexprel 14986 subcn2 15539 mulcn2 15540 ndvdsp1 16354 gcddiv 16493 lcmneg 16540 lubel 18467 gsumccatsn 18724 mulgaddcom 18978 oddvdsi 19416 odcong 19417 odeq 19418 efgsp1 19605 lspsnss 20601 lindsmm2 21384 mulmarep1el 22074 mdetunilem4 22117 iuncld 22549 neips 22617 opnneip 22623 comppfsc 23036 hmeof1o2 23267 ordthmeo 23306 ufinffr 23433 elfm3 23454 utop3cls 23756 blcntrps 23918 blcntr 23919 neibl 24010 blnei 24011 metss 24017 stdbdmetval 24023 prdsms 24040 blval2 24071 lmmbr 24775 lmmbr2 24776 iscau2 24794 bcthlem1 24841 bcthlem3 24843 bcthlem4 24844 dvn2bss 25447 dvfsumrlim 25548 dvfsumrlim2 25549 cxpexpz 26175 cxpsub 26190 cxpcom 26247 relogbzexp 26281 sltsub1 27543 1ewlk 29368 1pthon2ve 29407 upgr4cycl4dv4e 29438 konigsbergssiedgwpr 29502 dlwwlknondlwlknonf1o 29618 hvaddsub12 30291 hvaddsubass 30294 hvsubdistr1 30302 hvsubcan 30327 hhssnv 30517 spanunsni 30832 homco1 31054 homulass 31055 hoadddir 31057 hosubdi 31061 hoaddsubass 31068 hosubsub4 31071 lnopmi 31253 adjlnop 31339 mdsymlem5 31660 disjif 31809 disjif2 31812 ind0 33016 sigaclfu 33117 signstfvc 33585 bnj544 33905 bnj561 33914 bnj562 33915 bnj594 33923 swrdrevpfx 34107 satfvsuc 34352 satfvsucsuc 34356 clsint2 35214 ftc1anclem6 36566 isbnd2 36651 blbnd 36655 isdrngo2 36826 atnem0 38188 hlrelat5N 38272 ltrnel 39010 ltrnat 39011 ltrncnvat 39012 nnproddivdvdsd 40866 dvdsexpnn 41231 jm2.22 41734 jm2.23 41735 dvconstbi 43093 eelT11 43468 eelT12 43470 eelTT1 43471 eelT01 43472 eel0T1 43473 liminfvalxr 44499 rnglidlrng 46758 rmfsupp 47050 mndpfsupp 47052 scmfsupp 47054 dignn0flhalflem2 47302 rrx2vlinest 47427 rrx2linesl 47429 |
Copyright terms: Public domain | W3C validator |