![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl3an3 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
Ref | Expression |
---|---|
syl3an3.1 | ⊢ (𝜑 → 𝜃) |
syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | 3anim3i 1154 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | syl3an3.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3adant3l 1180 3adant3r 1181 syl3an3b 1405 syl3an3br 1408 disji 5151 ovmpox 7603 ovmpoga 7604 wrecseq123 8355 wfrlem14OLD 8378 dif1en 9226 dif1enOLD 9228 domtrfil 9258 ssdomfi2 9263 domnsymfi 9266 sdomdomtrfi 9267 domsdomtrfi 9268 phplem2 9271 php 9273 php3 9275 findcard3 9346 unbnn2 9361 axdc3lem4 10522 axdclem2 10589 gruiin 10879 gruen 10881 divass 11967 ltmul2 12145 xleadd1 13317 xltadd2 13319 xlemul1 13352 xltmul2 13355 elfzo 13718 modcyc2 13958 faclbnd5 14347 relexprel 15088 subcn2 15641 mulcn2 15642 ndvdsp1 16459 gcddiv 16598 lcmneg 16650 lubel 18584 gsumccatsn 18878 mulgaddcom 19138 oddvdsi 19590 odcong 19591 odeq 19592 efgsp1 19779 lspsnss 21011 rnglidlrng 21280 lindsmm2 21872 mulmarep1el 22599 mdetunilem4 22642 iuncld 23074 neips 23142 opnneip 23148 comppfsc 23561 hmeof1o2 23792 ordthmeo 23831 ufinffr 23958 elfm3 23979 utop3cls 24281 blcntrps 24443 blcntr 24444 neibl 24535 blnei 24536 metss 24542 stdbdmetval 24548 prdsms 24565 blval2 24596 lmmbr 25311 lmmbr2 25312 iscau2 25330 bcthlem1 25377 bcthlem3 25379 bcthlem4 25380 dvn2bss 25986 dvfsumrlim 26092 dvfsumrlim2 26093 cxpexpz 26727 cxpsub 26742 cxpcom 26799 relogbzexp 26837 sltsub1 28124 1ewlk 30147 1pthon2ve 30186 upgr4cycl4dv4e 30217 konigsbergssiedgwpr 30281 dlwwlknondlwlknonf1o 30397 hvaddsub12 31070 hvaddsubass 31073 hvsubdistr1 31081 hvsubcan 31106 hhssnv 31296 spanunsni 31611 homco1 31833 homulass 31834 hoadddir 31836 hosubdi 31840 hoaddsubass 31847 hosubsub4 31850 lnopmi 32032 adjlnop 32118 mdsymlem5 32439 disjif 32600 disjif2 32603 ind0 33982 sigaclfu 34083 signstfvc 34551 bnj544 34870 bnj561 34879 bnj562 34880 bnj594 34888 swrdrevpfx 35084 satfvsuc 35329 satfvsucsuc 35333 clsint2 36295 weiunso 36432 weiunwe 36435 ftc1anclem6 37658 isbnd2 37743 blbnd 37747 isdrngo2 37918 atnem0 39274 hlrelat5N 39358 ltrnel 40096 ltrnat 40097 ltrncnvat 40098 nnproddivdvdsd 41957 dvdsexpnn 42320 jm2.22 42952 jm2.23 42953 dvconstbi 44303 eelT11 44678 eelT12 44680 eelTT1 44681 eelT01 44682 eel0T1 44683 liminfvalxr 45704 rmfsupp 48099 mndpfsupp 48101 scmfsupp 48103 dignn0flhalflem2 48350 rrx2vlinest 48475 rrx2linesl 48477 |
Copyright terms: Public domain | W3C validator |