Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl3an3 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
Ref | Expression |
---|---|
syl3an3.1 | ⊢ (𝜑 → 𝜃) |
syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | 3anim3i 1153 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | syl3an3.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3adant3l 1179 3adant3r 1180 syl3an3b 1404 syl3an3br 1407 disji 5057 ovmpox 7426 ovmpoga 7427 wrecseq123 8130 wfrlem14OLD 8153 dif1en 8945 domtrfil 8978 ssdomfi2 8983 domnsymfi 8986 sdomdomtrfi 8987 domsdomtrfi 8988 phplem2 8991 php 8993 php3 8995 unbnn2 9071 axdc3lem4 10209 axdclem2 10276 gruiin 10566 gruen 10568 divass 11651 ltmul2 11826 xleadd1 12989 xltadd2 12991 xlemul1 13024 xltmul2 13027 elfzo 13389 modcyc2 13627 faclbnd5 14012 relexprel 14750 subcn2 15304 mulcn2 15305 ndvdsp1 16120 gcddiv 16259 lcmneg 16308 lubel 18232 gsumccatsn 18482 mulgaddcom 18727 oddvdsi 19156 odcong 19157 odeq 19158 efgsp1 19343 lspsnss 20252 lindsmm2 21036 mulmarep1el 21721 mdetunilem4 21764 iuncld 22196 neips 22264 opnneip 22270 comppfsc 22683 hmeof1o2 22914 ordthmeo 22953 ufinffr 23080 elfm3 23101 utop3cls 23403 blcntrps 23565 blcntr 23566 neibl 23657 blnei 23658 metss 23664 stdbdmetval 23670 prdsms 23687 blval2 23718 lmmbr 24422 lmmbr2 24423 iscau2 24441 bcthlem1 24488 bcthlem3 24490 bcthlem4 24491 dvn2bss 25094 dvfsumrlim 25195 dvfsumrlim2 25196 cxpexpz 25822 cxpsub 25837 cxpcom 25892 relogbzexp 25926 1ewlk 28479 1pthon2ve 28518 upgr4cycl4dv4e 28549 konigsbergssiedgwpr 28613 dlwwlknondlwlknonf1o 28729 hvaddsub12 29400 hvaddsubass 29403 hvsubdistr1 29411 hvsubcan 29436 hhssnv 29626 spanunsni 29941 homco1 30163 homulass 30164 hoadddir 30166 hosubdi 30170 hoaddsubass 30177 hosubsub4 30180 lnopmi 30362 adjlnop 30448 mdsymlem5 30769 disjif 30917 disjif2 30920 ind0 31986 sigaclfu 32087 signstfvc 32553 bnj544 32874 bnj561 32883 bnj562 32884 bnj594 32892 swrdrevpfx 33078 satfvsuc 33323 satfvsucsuc 33327 clsint2 34518 ftc1anclem6 35855 isbnd2 35941 blbnd 35945 isdrngo2 36116 atnem0 37332 hlrelat5N 37415 ltrnel 38153 ltrnat 38154 ltrncnvat 38155 nnproddivdvdsd 40009 dvdsexpnn 40340 jm2.22 40817 jm2.23 40818 dvconstbi 41952 eelT11 42327 eelT12 42329 eelTT1 42330 eelT01 42331 eel0T1 42332 liminfvalxr 43324 rmfsupp 45710 mndpfsupp 45712 scmfsupp 45714 dignn0flhalflem2 45962 rrx2vlinest 46087 rrx2linesl 46089 |
Copyright terms: Public domain | W3C validator |