| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3an3 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| syl3an3.1 | ⊢ (𝜑 → 𝜃) |
| syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | 3anim3i 1154 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | syl3an3.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3l 1181 3adant3r 1182 syl3an3b 1407 syl3an3br 1410 disji 5080 ovmpox 7508 ovmpoga 7509 wrecseq123 8252 dif1en 9082 domtrfil 9112 ssdomfi2 9117 domnsymfi 9120 sdomdomtrfi 9121 domsdomtrfi 9122 phplem2 9125 php 9127 php3 9129 findcard3 9178 unbnn2 9192 axdc3lem4 10355 axdclem2 10422 gruiin 10712 gruen 10714 divass 11805 ltmul2 11983 xleadd1 13161 xltadd2 13163 xlemul1 13196 xltmul2 13199 elfzo 13568 modcyc2 13818 faclbnd5 14212 relexprel 14953 subcn2 15509 mulcn2 15510 ndvdsp1 16329 gcddiv 16469 lcmneg 16521 lubel 18428 mndpfsupp 18683 gsumccatsn 18759 mulgaddcom 19019 oddvdsi 19468 odcong 19469 odeq 19470 efgsp1 19657 lspsnss 20932 rnglidlrng 21193 lindsmm2 21775 mulmarep1el 22507 mdetunilem4 22550 iuncld 22980 neips 23048 opnneip 23054 comppfsc 23467 hmeof1o2 23698 ordthmeo 23737 ufinffr 23864 elfm3 23885 utop3cls 24186 blcntrps 24347 blcntr 24348 neibl 24436 blnei 24437 metss 24443 stdbdmetval 24449 prdsms 24466 blval2 24497 lmmbr 25205 lmmbr2 25206 iscau2 25224 bcthlem1 25271 bcthlem3 25273 bcthlem4 25274 dvn2bss 25879 dvfsumrlim 25985 dvfsumrlim2 25986 cxpexpz 26623 cxpsub 26638 cxpcom 26695 relogbzexp 26733 sltsub1 28036 1ewlk 30116 1pthon2ve 30155 upgr4cycl4dv4e 30186 konigsbergssiedgwpr 30250 dlwwlknondlwlknonf1o 30366 hvaddsub12 31039 hvaddsubass 31042 hvsubdistr1 31050 hvsubcan 31075 hhssnv 31265 spanunsni 31580 homco1 31802 homulass 31803 hoadddir 31805 hosubdi 31809 hoaddsubass 31816 hosubsub4 31819 lnopmi 32001 adjlnop 32087 mdsymlem5 32408 disjif 32579 disjif2 32582 ind0 32865 sigaclfu 34204 signstfvc 34659 bnj544 34978 bnj561 34987 bnj562 34988 bnj594 34996 fineqvnttrclselem3 35215 swrdrevpfx 35233 satfvsuc 35477 satfvsucsuc 35481 clsint2 36445 weiunso 36582 weiunwe 36585 ftc1anclem6 37811 isbnd2 37896 blbnd 37900 isdrngo2 38071 atnem0 39490 hlrelat5N 39573 ltrnel 40311 ltrnat 40312 ltrncnvat 40313 nnproddivdvdsd 42166 dvdsexpnn 42503 jm2.22 43152 jm2.23 43153 dvconstbi 44491 eelT11 44863 eelT12 44865 eelTT1 44866 eelT01 44867 eel0T1 44868 liminfvalxr 45943 grlimprclnbgr 48158 rmfsupp 48535 scmfsupp 48537 dignn0flhalflem2 48778 rrx2vlinest 48903 rrx2linesl 48905 |
| Copyright terms: Public domain | W3C validator |