![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl3an3 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
Ref | Expression |
---|---|
syl3an3.1 | ⊢ (𝜑 → 𝜃) |
syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | 3anim3i 1153 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | syl3an3.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3adant3l 1179 3adant3r 1180 syl3an3b 1404 syl3an3br 1407 disji 5132 ovmpox 7585 ovmpoga 7586 wrecseq123 8337 wfrlem14OLD 8360 dif1en 9198 dif1enOLD 9200 domtrfil 9229 ssdomfi2 9234 domnsymfi 9237 sdomdomtrfi 9238 domsdomtrfi 9239 phplem2 9242 php 9244 php3 9246 findcard3 9315 unbnn2 9330 axdc3lem4 10490 axdclem2 10557 gruiin 10847 gruen 10849 divass 11937 ltmul2 12115 xleadd1 13293 xltadd2 13295 xlemul1 13328 xltmul2 13331 elfzo 13697 modcyc2 13943 faclbnd5 14333 relexprel 15074 subcn2 15627 mulcn2 15628 ndvdsp1 16444 gcddiv 16584 lcmneg 16636 lubel 18571 mndpfsupp 18792 gsumccatsn 18868 mulgaddcom 19128 oddvdsi 19580 odcong 19581 odeq 19582 efgsp1 19769 lspsnss 21005 rnglidlrng 21274 lindsmm2 21866 mulmarep1el 22593 mdetunilem4 22636 iuncld 23068 neips 23136 opnneip 23142 comppfsc 23555 hmeof1o2 23786 ordthmeo 23825 ufinffr 23952 elfm3 23973 utop3cls 24275 blcntrps 24437 blcntr 24438 neibl 24529 blnei 24530 metss 24536 stdbdmetval 24542 prdsms 24559 blval2 24590 lmmbr 25305 lmmbr2 25306 iscau2 25324 bcthlem1 25371 bcthlem3 25373 bcthlem4 25374 dvn2bss 25980 dvfsumrlim 26086 dvfsumrlim2 26087 cxpexpz 26723 cxpsub 26738 cxpcom 26795 relogbzexp 26833 sltsub1 28120 1ewlk 30143 1pthon2ve 30182 upgr4cycl4dv4e 30213 konigsbergssiedgwpr 30277 dlwwlknondlwlknonf1o 30393 hvaddsub12 31066 hvaddsubass 31069 hvsubdistr1 31077 hvsubcan 31102 hhssnv 31292 spanunsni 31607 homco1 31829 homulass 31830 hoadddir 31832 hosubdi 31836 hoaddsubass 31843 hosubsub4 31846 lnopmi 32028 adjlnop 32114 mdsymlem5 32435 disjif 32597 disjif2 32600 ind0 33998 sigaclfu 34099 signstfvc 34567 bnj544 34886 bnj561 34895 bnj562 34896 bnj594 34904 swrdrevpfx 35100 satfvsuc 35345 satfvsucsuc 35349 clsint2 36311 weiunso 36448 weiunwe 36451 ftc1anclem6 37684 isbnd2 37769 blbnd 37773 isdrngo2 37944 atnem0 39299 hlrelat5N 39383 ltrnel 40121 ltrnat 40122 ltrncnvat 40123 nnproddivdvdsd 41981 dvdsexpnn 42346 jm2.22 42983 jm2.23 42984 dvconstbi 44329 eelT11 44704 eelT12 44706 eelTT1 44707 eelT01 44708 eel0T1 44709 liminfvalxr 45738 rmfsupp 48217 scmfsupp 48219 dignn0flhalflem2 48465 rrx2vlinest 48590 rrx2linesl 48592 |
Copyright terms: Public domain | W3C validator |