| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3an3 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| syl3an3.1 | ⊢ (𝜑 → 𝜃) |
| syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | 3anim3i 1154 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | syl3an3.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3l 1181 3adant3r 1182 syl3an3b 1407 syl3an3br 1410 disji 5071 ovmpox 7494 ovmpoga 7495 wrecseq123 8238 dif1en 9066 domtrfil 9096 ssdomfi2 9101 domnsymfi 9104 sdomdomtrfi 9105 domsdomtrfi 9106 phplem2 9109 php 9111 php3 9113 findcard3 9162 unbnn2 9176 axdc3lem4 10339 axdclem2 10406 gruiin 10696 gruen 10698 divass 11789 ltmul2 11967 xleadd1 13149 xltadd2 13151 xlemul1 13184 xltmul2 13187 elfzo 13556 modcyc2 13806 faclbnd5 14200 relexprel 14941 subcn2 15497 mulcn2 15498 ndvdsp1 16317 gcddiv 16457 lcmneg 16509 lubel 18415 mndpfsupp 18670 gsumccatsn 18746 mulgaddcom 19006 oddvdsi 19455 odcong 19456 odeq 19457 efgsp1 19644 lspsnss 20918 rnglidlrng 21179 lindsmm2 21761 mulmarep1el 22482 mdetunilem4 22525 iuncld 22955 neips 23023 opnneip 23029 comppfsc 23442 hmeof1o2 23673 ordthmeo 23712 ufinffr 23839 elfm3 23860 utop3cls 24161 blcntrps 24322 blcntr 24323 neibl 24411 blnei 24412 metss 24418 stdbdmetval 24424 prdsms 24441 blval2 24472 lmmbr 25180 lmmbr2 25181 iscau2 25199 bcthlem1 25246 bcthlem3 25248 bcthlem4 25249 dvn2bss 25854 dvfsumrlim 25960 dvfsumrlim2 25961 cxpexpz 26598 cxpsub 26613 cxpcom 26670 relogbzexp 26708 sltsub1 28011 1ewlk 30087 1pthon2ve 30126 upgr4cycl4dv4e 30157 konigsbergssiedgwpr 30221 dlwwlknondlwlknonf1o 30337 hvaddsub12 31010 hvaddsubass 31013 hvsubdistr1 31021 hvsubcan 31046 hhssnv 31236 spanunsni 31551 homco1 31773 homulass 31774 hoadddir 31776 hosubdi 31780 hoaddsubass 31787 hosubsub4 31790 lnopmi 31972 adjlnop 32058 mdsymlem5 32379 disjif 32550 disjif2 32553 ind0 32831 sigaclfu 34124 signstfvc 34579 bnj544 34898 bnj561 34907 bnj562 34908 bnj594 34916 fineqvnttrclselem3 35135 swrdrevpfx 35153 satfvsuc 35397 satfvsucsuc 35401 clsint2 36363 weiunso 36500 weiunwe 36503 ftc1anclem6 37738 isbnd2 37823 blbnd 37827 isdrngo2 37998 atnem0 39357 hlrelat5N 39440 ltrnel 40178 ltrnat 40179 ltrncnvat 40180 nnproddivdvdsd 42033 dvdsexpnn 42366 jm2.22 43028 jm2.23 43029 dvconstbi 44367 eelT11 44739 eelT12 44741 eelTT1 44742 eelT01 44743 eel0T1 44744 liminfvalxr 45821 grlimprclnbgr 48027 rmfsupp 48404 scmfsupp 48406 dignn0flhalflem2 48648 rrx2vlinest 48773 rrx2linesl 48775 |
| Copyright terms: Public domain | W3C validator |