| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3an3 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| syl3an3.1 | ⊢ (𝜑 → 𝜃) |
| syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | 3anim3i 1154 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | syl3an3.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3l 1181 3adant3r 1182 syl3an3b 1407 syl3an3br 1410 disji 5092 ovmpox 7542 ovmpoga 7543 wrecseq123 8292 dif1en 9124 dif1enOLD 9126 domtrfil 9156 ssdomfi2 9161 domnsymfi 9164 sdomdomtrfi 9165 domsdomtrfi 9166 phplem2 9169 php 9171 php3 9173 findcard3 9229 unbnn2 9244 axdc3lem4 10406 axdclem2 10473 gruiin 10763 gruen 10765 divass 11855 ltmul2 12033 xleadd1 13215 xltadd2 13217 xlemul1 13250 xltmul2 13253 elfzo 13622 modcyc2 13869 faclbnd5 14263 relexprel 15005 subcn2 15561 mulcn2 15562 ndvdsp1 16381 gcddiv 16521 lcmneg 16573 lubel 18473 mndpfsupp 18694 gsumccatsn 18770 mulgaddcom 19030 oddvdsi 19478 odcong 19479 odeq 19480 efgsp1 19667 lspsnss 20896 rnglidlrng 21157 lindsmm2 21738 mulmarep1el 22459 mdetunilem4 22502 iuncld 22932 neips 23000 opnneip 23006 comppfsc 23419 hmeof1o2 23650 ordthmeo 23689 ufinffr 23816 elfm3 23837 utop3cls 24139 blcntrps 24300 blcntr 24301 neibl 24389 blnei 24390 metss 24396 stdbdmetval 24402 prdsms 24419 blval2 24450 lmmbr 25158 lmmbr2 25159 iscau2 25177 bcthlem1 25224 bcthlem3 25226 bcthlem4 25227 dvn2bss 25832 dvfsumrlim 25938 dvfsumrlim2 25939 cxpexpz 26576 cxpsub 26591 cxpcom 26648 relogbzexp 26686 sltsub1 27980 1ewlk 30044 1pthon2ve 30083 upgr4cycl4dv4e 30114 konigsbergssiedgwpr 30178 dlwwlknondlwlknonf1o 30294 hvaddsub12 30967 hvaddsubass 30970 hvsubdistr1 30978 hvsubcan 31003 hhssnv 31193 spanunsni 31508 homco1 31730 homulass 31731 hoadddir 31733 hosubdi 31737 hoaddsubass 31744 hosubsub4 31747 lnopmi 31929 adjlnop 32015 mdsymlem5 32336 disjif 32507 disjif2 32510 ind0 32781 sigaclfu 34109 signstfvc 34565 bnj544 34884 bnj561 34893 bnj562 34894 bnj594 34902 swrdrevpfx 35104 satfvsuc 35348 satfvsucsuc 35352 clsint2 36317 weiunso 36454 weiunwe 36457 ftc1anclem6 37692 isbnd2 37777 blbnd 37781 isdrngo2 37952 atnem0 39311 hlrelat5N 39395 ltrnel 40133 ltrnat 40134 ltrncnvat 40135 nnproddivdvdsd 41988 dvdsexpnn 42321 jm2.22 42984 jm2.23 42985 dvconstbi 44323 eelT11 44696 eelT12 44698 eelTT1 44699 eelT01 44700 eel0T1 44701 liminfvalxr 45781 rmfsupp 48361 scmfsupp 48363 dignn0flhalflem2 48605 rrx2vlinest 48730 rrx2linesl 48732 |
| Copyright terms: Public domain | W3C validator |