Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl3an3 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
Ref | Expression |
---|---|
syl3an3.1 | ⊢ (𝜑 → 𝜃) |
syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | 3anim3i 1152 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | syl3an3.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3adant3l 1178 3adant3r 1179 syl3an3b 1403 syl3an3br 1406 disji 5053 ovmpox 7404 ovmpoga 7405 wrecseq123 8101 wfrlem14OLD 8124 dif1en 8907 unbnn2 9001 axdc3lem4 10140 axdclem2 10207 gruiin 10497 gruen 10499 divass 11581 ltmul2 11756 xleadd1 12918 xltadd2 12920 xlemul1 12953 xltmul2 12956 elfzo 13318 modcyc2 13555 faclbnd5 13940 relexprel 14678 subcn2 15232 mulcn2 15233 ndvdsp1 16048 gcddiv 16187 lcmneg 16236 lubel 18147 gsumccatsn 18397 mulgaddcom 18642 oddvdsi 19071 odcong 19072 odeq 19073 efgsp1 19258 lspsnss 20167 lindsmm2 20946 mulmarep1el 21629 mdetunilem4 21672 iuncld 22104 neips 22172 opnneip 22178 comppfsc 22591 hmeof1o2 22822 ordthmeo 22861 ufinffr 22988 elfm3 23009 utop3cls 23311 blcntrps 23473 blcntr 23474 neibl 23563 blnei 23564 metss 23570 stdbdmetval 23576 prdsms 23593 blval2 23624 lmmbr 24327 lmmbr2 24328 iscau2 24346 bcthlem1 24393 bcthlem3 24395 bcthlem4 24396 dvn2bss 24999 dvfsumrlim 25100 dvfsumrlim2 25101 cxpexpz 25727 cxpsub 25742 cxpcom 25797 relogbzexp 25831 1ewlk 28380 1pthon2ve 28419 upgr4cycl4dv4e 28450 konigsbergssiedgwpr 28514 dlwwlknondlwlknonf1o 28630 hvaddsub12 29301 hvaddsubass 29304 hvsubdistr1 29312 hvsubcan 29337 hhssnv 29527 spanunsni 29842 homco1 30064 homulass 30065 hoadddir 30067 hosubdi 30071 hoaddsubass 30078 hosubsub4 30081 lnopmi 30263 adjlnop 30349 mdsymlem5 30670 disjif 30818 disjif2 30821 ind0 31886 sigaclfu 31987 signstfvc 32453 bnj544 32774 bnj561 32783 bnj562 32784 bnj594 32792 swrdrevpfx 32978 satfvsuc 33223 satfvsucsuc 33227 clsint2 34445 ftc1anclem6 35782 isbnd2 35868 blbnd 35872 isdrngo2 36043 atnem0 37259 hlrelat5N 37342 ltrnel 38080 ltrnat 38081 ltrncnvat 38082 nnproddivdvdsd 39937 dvdsexpnn 40261 jm2.22 40733 jm2.23 40734 dvconstbi 41841 eelT11 42216 eelT12 42218 eelTT1 42219 eelT01 42220 eel0T1 42221 liminfvalxr 43214 rmfsupp 45598 mndpfsupp 45600 scmfsupp 45602 dignn0flhalflem2 45850 rrx2vlinest 45975 rrx2linesl 45977 |
Copyright terms: Public domain | W3C validator |