| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3an3 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| syl3an3.1 | ⊢ (𝜑 → 𝜃) |
| syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | 3anim3i 1154 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | syl3an3.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3l 1181 3adant3r 1182 syl3an3b 1407 syl3an3br 1410 disji 5087 ovmpox 7522 ovmpoga 7523 wrecseq123 8269 dif1en 9101 dif1enOLD 9103 domtrfil 9133 ssdomfi2 9138 domnsymfi 9141 sdomdomtrfi 9142 domsdomtrfi 9143 phplem2 9146 php 9148 php3 9150 findcard3 9205 unbnn2 9220 axdc3lem4 10382 axdclem2 10449 gruiin 10739 gruen 10741 divass 11831 ltmul2 12009 xleadd1 13191 xltadd2 13193 xlemul1 13226 xltmul2 13229 elfzo 13598 modcyc2 13845 faclbnd5 14239 relexprel 14981 subcn2 15537 mulcn2 15538 ndvdsp1 16357 gcddiv 16497 lcmneg 16549 lubel 18449 mndpfsupp 18670 gsumccatsn 18746 mulgaddcom 19006 oddvdsi 19454 odcong 19455 odeq 19456 efgsp1 19643 lspsnss 20872 rnglidlrng 21133 lindsmm2 21714 mulmarep1el 22435 mdetunilem4 22478 iuncld 22908 neips 22976 opnneip 22982 comppfsc 23395 hmeof1o2 23626 ordthmeo 23665 ufinffr 23792 elfm3 23813 utop3cls 24115 blcntrps 24276 blcntr 24277 neibl 24365 blnei 24366 metss 24372 stdbdmetval 24378 prdsms 24395 blval2 24426 lmmbr 25134 lmmbr2 25135 iscau2 25153 bcthlem1 25200 bcthlem3 25202 bcthlem4 25203 dvn2bss 25808 dvfsumrlim 25914 dvfsumrlim2 25915 cxpexpz 26552 cxpsub 26567 cxpcom 26624 relogbzexp 26662 sltsub1 27956 1ewlk 30017 1pthon2ve 30056 upgr4cycl4dv4e 30087 konigsbergssiedgwpr 30151 dlwwlknondlwlknonf1o 30267 hvaddsub12 30940 hvaddsubass 30943 hvsubdistr1 30951 hvsubcan 30976 hhssnv 31166 spanunsni 31481 homco1 31703 homulass 31704 hoadddir 31706 hosubdi 31710 hoaddsubass 31717 hosubsub4 31720 lnopmi 31902 adjlnop 31988 mdsymlem5 32309 disjif 32480 disjif2 32483 ind0 32754 sigaclfu 34082 signstfvc 34538 bnj544 34857 bnj561 34866 bnj562 34867 bnj594 34875 swrdrevpfx 35077 satfvsuc 35321 satfvsucsuc 35325 clsint2 36290 weiunso 36427 weiunwe 36430 ftc1anclem6 37665 isbnd2 37750 blbnd 37754 isdrngo2 37925 atnem0 39284 hlrelat5N 39368 ltrnel 40106 ltrnat 40107 ltrncnvat 40108 nnproddivdvdsd 41961 dvdsexpnn 42294 jm2.22 42957 jm2.23 42958 dvconstbi 44296 eelT11 44669 eelT12 44671 eelTT1 44672 eelT01 44673 eel0T1 44674 liminfvalxr 45754 rmfsupp 48334 scmfsupp 48336 dignn0flhalflem2 48578 rrx2vlinest 48703 rrx2linesl 48705 |
| Copyright terms: Public domain | W3C validator |