![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl3an3 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
Ref | Expression |
---|---|
syl3an3.1 | ⊢ (𝜑 → 𝜃) |
syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | 3anim3i 1154 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | syl3an3.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: 3adant3l 1180 3adant3r 1181 syl3an3b 1405 syl3an3br 1408 disji 5130 ovmpox 7557 ovmpoga 7558 wrecseq123 8295 wfrlem14OLD 8318 dif1en 9156 dif1enOLD 9158 domtrfil 9191 ssdomfi2 9196 domnsymfi 9199 sdomdomtrfi 9200 domsdomtrfi 9201 phplem2 9204 php 9206 php3 9208 findcard3 9281 unbnn2 9296 axdc3lem4 10444 axdclem2 10511 gruiin 10801 gruen 10803 divass 11886 ltmul2 12061 xleadd1 13230 xltadd2 13232 xlemul1 13265 xltmul2 13268 elfzo 13630 modcyc2 13868 faclbnd5 14254 relexprel 14982 subcn2 15535 mulcn2 15536 ndvdsp1 16350 gcddiv 16489 lcmneg 16536 lubel 18463 gsumccatsn 18720 mulgaddcom 18972 oddvdsi 19410 odcong 19411 odeq 19412 efgsp1 19599 lspsnss 20593 lindsmm2 21375 mulmarep1el 22065 mdetunilem4 22108 iuncld 22540 neips 22608 opnneip 22614 comppfsc 23027 hmeof1o2 23258 ordthmeo 23297 ufinffr 23424 elfm3 23445 utop3cls 23747 blcntrps 23909 blcntr 23910 neibl 24001 blnei 24002 metss 24008 stdbdmetval 24014 prdsms 24031 blval2 24062 lmmbr 24766 lmmbr2 24767 iscau2 24785 bcthlem1 24832 bcthlem3 24834 bcthlem4 24835 dvn2bss 25438 dvfsumrlim 25539 dvfsumrlim2 25540 cxpexpz 26166 cxpsub 26181 cxpcom 26236 relogbzexp 26270 sltsub1 27532 1ewlk 29357 1pthon2ve 29396 upgr4cycl4dv4e 29427 konigsbergssiedgwpr 29491 dlwwlknondlwlknonf1o 29607 hvaddsub12 30278 hvaddsubass 30281 hvsubdistr1 30289 hvsubcan 30314 hhssnv 30504 spanunsni 30819 homco1 31041 homulass 31042 hoadddir 31044 hosubdi 31048 hoaddsubass 31055 hosubsub4 31058 lnopmi 31240 adjlnop 31326 mdsymlem5 31647 disjif 31796 disjif2 31799 ind0 33004 sigaclfu 33105 signstfvc 33573 bnj544 33893 bnj561 33902 bnj562 33903 bnj594 33911 swrdrevpfx 34095 satfvsuc 34340 satfvsucsuc 34344 clsint2 35202 ftc1anclem6 36554 isbnd2 36639 blbnd 36643 isdrngo2 36814 atnem0 38176 hlrelat5N 38260 ltrnel 38998 ltrnat 38999 ltrncnvat 39000 nnproddivdvdsd 40854 dvdsexpnn 41226 jm2.22 41719 jm2.23 41720 dvconstbi 43078 eelT11 43453 eelT12 43455 eelTT1 43456 eelT01 43457 eel0T1 43458 liminfvalxr 44485 rnglidlrng 46740 rmfsupp 47003 mndpfsupp 47005 scmfsupp 47007 dignn0flhalflem2 47255 rrx2vlinest 47380 rrx2linesl 47382 |
Copyright terms: Public domain | W3C validator |