| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3an3 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| syl3an3.1 | ⊢ (𝜑 → 𝜃) |
| syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | 3anim3i 1154 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | syl3an3.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3l 1181 3adant3r 1182 syl3an3b 1407 syl3an3br 1410 disji 5095 ovmpox 7545 ovmpoga 7546 wrecseq123 8295 dif1en 9130 dif1enOLD 9132 domtrfil 9162 ssdomfi2 9167 domnsymfi 9170 sdomdomtrfi 9171 domsdomtrfi 9172 phplem2 9175 php 9177 php3 9179 findcard3 9236 unbnn2 9251 axdc3lem4 10413 axdclem2 10480 gruiin 10770 gruen 10772 divass 11862 ltmul2 12040 xleadd1 13222 xltadd2 13224 xlemul1 13257 xltmul2 13260 elfzo 13629 modcyc2 13876 faclbnd5 14270 relexprel 15012 subcn2 15568 mulcn2 15569 ndvdsp1 16388 gcddiv 16528 lcmneg 16580 lubel 18480 mndpfsupp 18701 gsumccatsn 18777 mulgaddcom 19037 oddvdsi 19485 odcong 19486 odeq 19487 efgsp1 19674 lspsnss 20903 rnglidlrng 21164 lindsmm2 21745 mulmarep1el 22466 mdetunilem4 22509 iuncld 22939 neips 23007 opnneip 23013 comppfsc 23426 hmeof1o2 23657 ordthmeo 23696 ufinffr 23823 elfm3 23844 utop3cls 24146 blcntrps 24307 blcntr 24308 neibl 24396 blnei 24397 metss 24403 stdbdmetval 24409 prdsms 24426 blval2 24457 lmmbr 25165 lmmbr2 25166 iscau2 25184 bcthlem1 25231 bcthlem3 25233 bcthlem4 25234 dvn2bss 25839 dvfsumrlim 25945 dvfsumrlim2 25946 cxpexpz 26583 cxpsub 26598 cxpcom 26655 relogbzexp 26693 sltsub1 27987 1ewlk 30051 1pthon2ve 30090 upgr4cycl4dv4e 30121 konigsbergssiedgwpr 30185 dlwwlknondlwlknonf1o 30301 hvaddsub12 30974 hvaddsubass 30977 hvsubdistr1 30985 hvsubcan 31010 hhssnv 31200 spanunsni 31515 homco1 31737 homulass 31738 hoadddir 31740 hosubdi 31744 hoaddsubass 31751 hosubsub4 31754 lnopmi 31936 adjlnop 32022 mdsymlem5 32343 disjif 32514 disjif2 32517 ind0 32788 sigaclfu 34116 signstfvc 34572 bnj544 34891 bnj561 34900 bnj562 34901 bnj594 34909 swrdrevpfx 35111 satfvsuc 35355 satfvsucsuc 35359 clsint2 36324 weiunso 36461 weiunwe 36464 ftc1anclem6 37699 isbnd2 37784 blbnd 37788 isdrngo2 37959 atnem0 39318 hlrelat5N 39402 ltrnel 40140 ltrnat 40141 ltrncnvat 40142 nnproddivdvdsd 41995 dvdsexpnn 42328 jm2.22 42991 jm2.23 42992 dvconstbi 44330 eelT11 44703 eelT12 44705 eelTT1 44706 eelT01 44707 eel0T1 44708 liminfvalxr 45788 rmfsupp 48365 scmfsupp 48367 dignn0flhalflem2 48609 rrx2vlinest 48734 rrx2linesl 48736 |
| Copyright terms: Public domain | W3C validator |