| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3an3 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| syl3an3.1 | ⊢ (𝜑 → 𝜃) |
| syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | 3anim3i 1154 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | syl3an3.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3l 1181 3adant3r 1182 syl3an3b 1407 syl3an3br 1410 disji 5104 ovmpox 7558 ovmpoga 7559 wrecseq123 8311 wfrlem14OLD 8334 dif1en 9172 dif1enOLD 9174 domtrfil 9204 ssdomfi2 9209 domnsymfi 9212 sdomdomtrfi 9213 domsdomtrfi 9214 phplem2 9217 php 9219 php3 9221 findcard3 9288 unbnn2 9303 axdc3lem4 10465 axdclem2 10532 gruiin 10822 gruen 10824 divass 11912 ltmul2 12090 xleadd1 13269 xltadd2 13271 xlemul1 13304 xltmul2 13307 elfzo 13676 modcyc2 13922 faclbnd5 14314 relexprel 15056 subcn2 15609 mulcn2 15610 ndvdsp1 16428 gcddiv 16568 lcmneg 16620 lubel 18522 mndpfsupp 18743 gsumccatsn 18819 mulgaddcom 19079 oddvdsi 19527 odcong 19528 odeq 19529 efgsp1 19716 lspsnss 20945 rnglidlrng 21206 lindsmm2 21787 mulmarep1el 22508 mdetunilem4 22551 iuncld 22981 neips 23049 opnneip 23055 comppfsc 23468 hmeof1o2 23699 ordthmeo 23738 ufinffr 23865 elfm3 23886 utop3cls 24188 blcntrps 24349 blcntr 24350 neibl 24438 blnei 24439 metss 24445 stdbdmetval 24451 prdsms 24468 blval2 24499 lmmbr 25208 lmmbr2 25209 iscau2 25227 bcthlem1 25274 bcthlem3 25276 bcthlem4 25277 dvn2bss 25882 dvfsumrlim 25988 dvfsumrlim2 25989 cxpexpz 26626 cxpsub 26641 cxpcom 26698 relogbzexp 26736 sltsub1 28023 1ewlk 30042 1pthon2ve 30081 upgr4cycl4dv4e 30112 konigsbergssiedgwpr 30176 dlwwlknondlwlknonf1o 30292 hvaddsub12 30965 hvaddsubass 30968 hvsubdistr1 30976 hvsubcan 31001 hhssnv 31191 spanunsni 31506 homco1 31728 homulass 31729 hoadddir 31731 hosubdi 31735 hoaddsubass 31742 hosubsub4 31745 lnopmi 31927 adjlnop 32013 mdsymlem5 32334 disjif 32505 disjif2 32508 ind0 32781 sigaclfu 34096 signstfvc 34552 bnj544 34871 bnj561 34880 bnj562 34881 bnj594 34889 swrdrevpfx 35085 satfvsuc 35329 satfvsucsuc 35333 clsint2 36293 weiunso 36430 weiunwe 36433 ftc1anclem6 37668 isbnd2 37753 blbnd 37757 isdrngo2 37928 atnem0 39282 hlrelat5N 39366 ltrnel 40104 ltrnat 40105 ltrncnvat 40106 nnproddivdvdsd 41959 dvdsexpnn 42329 jm2.22 42966 jm2.23 42967 dvconstbi 44306 eelT11 44679 eelT12 44681 eelTT1 44682 eelT01 44683 eel0T1 44684 liminfvalxr 45760 rmfsupp 48296 scmfsupp 48298 dignn0flhalflem2 48544 rrx2vlinest 48669 rrx2linesl 48671 |
| Copyright terms: Public domain | W3C validator |