![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl3an3 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
Ref | Expression |
---|---|
syl3an3.1 | ⊢ (𝜑 → 𝜃) |
syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | 3anim3i 1155 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | syl3an3.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3adant3l 1181 3adant3r 1182 syl3an3b 1406 syl3an3br 1409 disji 5132 ovmpox 7561 ovmpoga 7562 wrecseq123 8299 wfrlem14OLD 8322 dif1en 9160 dif1enOLD 9162 domtrfil 9195 ssdomfi2 9200 domnsymfi 9203 sdomdomtrfi 9204 domsdomtrfi 9205 phplem2 9208 php 9210 php3 9212 findcard3 9285 unbnn2 9300 axdc3lem4 10448 axdclem2 10515 gruiin 10805 gruen 10807 divass 11890 ltmul2 12065 xleadd1 13234 xltadd2 13236 xlemul1 13269 xltmul2 13272 elfzo 13634 modcyc2 13872 faclbnd5 14258 relexprel 14986 subcn2 15539 mulcn2 15540 ndvdsp1 16354 gcddiv 16493 lcmneg 16540 lubel 18467 gsumccatsn 18724 mulgaddcom 18978 oddvdsi 19416 odcong 19417 odeq 19418 efgsp1 19605 lspsnss 20601 lindsmm2 21384 mulmarep1el 22074 mdetunilem4 22117 iuncld 22549 neips 22617 opnneip 22623 comppfsc 23036 hmeof1o2 23267 ordthmeo 23306 ufinffr 23433 elfm3 23454 utop3cls 23756 blcntrps 23918 blcntr 23919 neibl 24010 blnei 24011 metss 24017 stdbdmetval 24023 prdsms 24040 blval2 24071 lmmbr 24775 lmmbr2 24776 iscau2 24794 bcthlem1 24841 bcthlem3 24843 bcthlem4 24844 dvn2bss 25447 dvfsumrlim 25548 dvfsumrlim2 25549 cxpexpz 26175 cxpsub 26190 cxpcom 26247 relogbzexp 26281 sltsub1 27546 1ewlk 29399 1pthon2ve 29438 upgr4cycl4dv4e 29469 konigsbergssiedgwpr 29533 dlwwlknondlwlknonf1o 29649 hvaddsub12 30322 hvaddsubass 30325 hvsubdistr1 30333 hvsubcan 30358 hhssnv 30548 spanunsni 30863 homco1 31085 homulass 31086 hoadddir 31088 hosubdi 31092 hoaddsubass 31099 hosubsub4 31102 lnopmi 31284 adjlnop 31370 mdsymlem5 31691 disjif 31840 disjif2 31843 ind0 33047 sigaclfu 33148 signstfvc 33616 bnj544 33936 bnj561 33945 bnj562 33946 bnj594 33954 swrdrevpfx 34138 satfvsuc 34383 satfvsucsuc 34387 clsint2 35262 ftc1anclem6 36614 isbnd2 36699 blbnd 36703 isdrngo2 36874 atnem0 38236 hlrelat5N 38320 ltrnel 39058 ltrnat 39059 ltrncnvat 39060 nnproddivdvdsd 40914 dvdsexpnn 41279 jm2.22 41782 jm2.23 41783 dvconstbi 43141 eelT11 43516 eelT12 43518 eelTT1 43519 eelT01 43520 eel0T1 43521 liminfvalxr 44547 rnglidlrng 46806 rmfsupp 47098 mndpfsupp 47100 scmfsupp 47102 dignn0flhalflem2 47350 rrx2vlinest 47475 rrx2linesl 47477 |
Copyright terms: Public domain | W3C validator |