| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantl1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantl1 | ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . 2 ⊢ ((𝜏 ∧ 𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ad2antl2 1187 3ad2antl3 1188 funcnvqp 6540 onfununi 8256 omord2 8477 en2eqpr 9893 divmuldiv 11816 ioojoin 13378 expnlbnd 14135 swrdlend 14556 2cshw 14715 lcmledvds 16505 pospropd 18226 marrepcl 22474 gsummatr01lem3 22567 upxp 23533 rnelfmlem 23862 brbtwn2 28878 wlkonprop 29630 trlsonprop 29679 pthsonprop 29717 spthonprop 29718 spthonepeq 29725 fh2 31591 homulass 31774 hoadddi 31775 hoadddir 31776 metf1o 37795 rngohomco 38014 rngoisoco 38022 op01dm 39222 paddss12 39858 wessf1ornlem 45222 elaa2 46272 smflimlem2 46810 |
| Copyright terms: Public domain | W3C validator |