| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantl1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantl1 | ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . 2 ⊢ ((𝜏 ∧ 𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ad2antl2 1187 3ad2antl3 1188 funcnvqp 6550 onfununi 8271 omord2 8492 en2eqpr 9920 divmuldiv 11843 ioojoin 13405 expnlbnd 14159 swrdlend 14579 2cshw 14738 lcmledvds 16529 pospropd 18250 marrepcl 22468 gsummatr01lem3 22561 upxp 23527 rnelfmlem 23856 brbtwn2 28869 wlkonprop 29621 trlsonprop 29670 pthsonprop 29708 spthonprop 29709 spthonepeq 29716 fh2 31582 homulass 31765 hoadddi 31766 hoadddir 31767 metf1o 37754 rngohomco 37973 rngoisoco 37981 op01dm 39181 paddss12 39818 wessf1ornlem 45183 elaa2 46235 smflimlem2 46773 |
| Copyright terms: Public domain | W3C validator |