Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adantl1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adantl1 | ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1149 | . 2 ⊢ ((𝜏 ∧ 𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3ad2antl2 1185 3ad2antl3 1186 funcnvqp 6549 onfununi 8243 omord2 8470 en2eqpr 9865 divmuldiv 11777 ioojoin 13317 expnlbnd 14050 swrdlend 14465 2cshw 14625 lcmledvds 16402 pospropd 18143 marrepcl 21820 gsummatr01lem3 21913 upxp 22881 rnelfmlem 23210 brbtwn2 27563 wlkonprop 28315 trlsonprop 28365 pthsonprop 28401 spthonprop 28402 spthonepeq 28409 fh2 30270 homulass 30453 hoadddi 30454 hoadddir 30455 metf1o 36069 rngohomco 36288 rngoisoco 36296 op01dm 37501 paddss12 38138 wessf1ornlem 43101 elaa2 44163 smflimlem2 44699 |
Copyright terms: Public domain | W3C validator |