| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantl1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantl1 | ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . 2 ⊢ ((𝜏 ∧ 𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ad2antl2 1187 3ad2antl3 1188 funcnvqp 6580 onfununi 8310 omord2 8531 en2eqpr 9960 divmuldiv 11882 ioojoin 13444 expnlbnd 14198 swrdlend 14618 2cshw 14778 lcmledvds 16569 pospropd 18286 marrepcl 22451 gsummatr01lem3 22544 upxp 23510 rnelfmlem 23839 brbtwn2 28832 wlkonprop 29586 trlsonprop 29636 pthsonprop 29674 spthonprop 29675 spthonepeq 29682 fh2 31548 homulass 31731 hoadddi 31732 hoadddir 31733 metf1o 37749 rngohomco 37968 rngoisoco 37976 op01dm 39176 paddss12 39813 wessf1ornlem 45179 elaa2 46232 smflimlem2 46770 |
| Copyright terms: Public domain | W3C validator |