| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantl1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantl1 | ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . 2 ⊢ ((𝜏 ∧ 𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ad2antl2 1187 3ad2antl3 1188 funcnvqp 6600 onfununi 8355 omord2 8579 en2eqpr 10021 divmuldiv 11941 ioojoin 13500 expnlbnd 14251 swrdlend 14671 2cshw 14831 lcmledvds 16618 pospropd 18337 marrepcl 22502 gsummatr01lem3 22595 upxp 23561 rnelfmlem 23890 brbtwn2 28884 wlkonprop 29638 trlsonprop 29688 pthsonprop 29726 spthonprop 29727 spthonepeq 29734 fh2 31600 homulass 31783 hoadddi 31784 hoadddir 31785 metf1o 37779 rngohomco 37998 rngoisoco 38006 op01dm 39201 paddss12 39838 wessf1ornlem 45209 elaa2 46263 smflimlem2 46801 |
| Copyright terms: Public domain | W3C validator |