| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantl1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantl1 | ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . 2 ⊢ ((𝜏 ∧ 𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ad2antl2 1187 3ad2antl3 1188 funcnvqp 6564 onfununi 8287 omord2 8508 en2eqpr 9936 divmuldiv 11858 ioojoin 13420 expnlbnd 14174 swrdlend 14594 2cshw 14754 lcmledvds 16545 pospropd 18262 marrepcl 22427 gsummatr01lem3 22520 upxp 23486 rnelfmlem 23815 brbtwn2 28808 wlkonprop 29560 trlsonprop 29609 pthsonprop 29647 spthonprop 29648 spthonepeq 29655 fh2 31521 homulass 31704 hoadddi 31705 hoadddir 31706 metf1o 37722 rngohomco 37941 rngoisoco 37949 op01dm 39149 paddss12 39786 wessf1ornlem 45152 elaa2 46205 smflimlem2 46743 |
| Copyright terms: Public domain | W3C validator |