![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantl1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adantl1 | ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1150 | . 2 ⊢ ((𝜏 ∧ 𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylan 579 | 1 ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3ad2antl2 1186 3ad2antl3 1187 funcnvqp 6642 onfununi 8397 omord2 8623 en2eqpr 10076 divmuldiv 11994 ioojoin 13543 expnlbnd 14282 swrdlend 14701 2cshw 14861 lcmledvds 16646 pospropd 18397 marrepcl 22591 gsummatr01lem3 22684 upxp 23652 rnelfmlem 23981 brbtwn2 28938 wlkonprop 29694 trlsonprop 29744 pthsonprop 29780 spthonprop 29781 spthonepeq 29788 fh2 31651 homulass 31834 hoadddi 31835 hoadddir 31836 metf1o 37715 rngohomco 37934 rngoisoco 37942 op01dm 39139 paddss12 39776 wessf1ornlem 45092 elaa2 46155 smflimlem2 46693 |
Copyright terms: Public domain | W3C validator |