![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantl1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adantl1 | ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1149 | . 2 ⊢ ((𝜏 ∧ 𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3ad2antl2 1185 3ad2antl3 1186 funcnvqp 6632 onfununi 8380 omord2 8604 en2eqpr 10045 divmuldiv 11965 ioojoin 13520 expnlbnd 14269 swrdlend 14688 2cshw 14848 lcmledvds 16633 pospropd 18385 marrepcl 22586 gsummatr01lem3 22679 upxp 23647 rnelfmlem 23976 brbtwn2 28935 wlkonprop 29691 trlsonprop 29741 pthsonprop 29777 spthonprop 29778 spthonepeq 29785 fh2 31648 homulass 31831 hoadddi 31832 hoadddir 31833 metf1o 37742 rngohomco 37961 rngoisoco 37969 op01dm 39165 paddss12 39802 wessf1ornlem 45128 elaa2 46190 smflimlem2 46728 |
Copyright terms: Public domain | W3C validator |