| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantl1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantl1 | ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . 2 ⊢ ((𝜏 ∧ 𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ad2antl2 1187 3ad2antl3 1188 funcnvqp 6583 onfununi 8313 omord2 8534 en2eqpr 9967 divmuldiv 11889 ioojoin 13451 expnlbnd 14205 swrdlend 14625 2cshw 14785 lcmledvds 16576 pospropd 18293 marrepcl 22458 gsummatr01lem3 22551 upxp 23517 rnelfmlem 23846 brbtwn2 28839 wlkonprop 29593 trlsonprop 29643 pthsonprop 29681 spthonprop 29682 spthonepeq 29689 fh2 31555 homulass 31738 hoadddi 31739 hoadddir 31740 metf1o 37756 rngohomco 37975 rngoisoco 37983 op01dm 39183 paddss12 39820 wessf1ornlem 45186 elaa2 46239 smflimlem2 46777 |
| Copyright terms: Public domain | W3C validator |