Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adantl1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adantl1 | ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1149 | . 2 ⊢ ((𝜏 ∧ 𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3ad2antl2 1185 3ad2antl3 1186 funcnvqp 6498 onfununi 8172 omord2 8398 en2eqpr 9763 divmuldiv 11675 ioojoin 13215 expnlbnd 13948 swrdlend 14366 2cshw 14526 lcmledvds 16304 pospropd 18045 marrepcl 21713 gsummatr01lem3 21806 upxp 22774 rnelfmlem 23103 brbtwn2 27273 wlkonprop 28026 trlsonprop 28076 pthsonprop 28112 spthonprop 28113 spthonepeq 28120 fh2 29981 homulass 30164 hoadddi 30165 hoadddir 30166 metf1o 35913 rngohomco 36132 rngoisoco 36140 op01dm 37197 paddss12 37833 wessf1ornlem 42722 elaa2 43775 smflimlem2 44307 |
Copyright terms: Public domain | W3C validator |