| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantl1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantl1 | ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . 2 ⊢ ((𝜏 ∧ 𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ad2antl2 1187 3ad2antl3 1188 funcnvqp 6553 onfununi 8270 omord2 8491 en2eqpr 9909 divmuldiv 11832 ioojoin 13390 expnlbnd 14147 swrdlend 14568 2cshw 14727 lcmledvds 16517 pospropd 18239 marrepcl 22499 gsummatr01lem3 22592 upxp 23558 rnelfmlem 23887 brbtwn2 28904 wlkonprop 29656 trlsonprop 29705 pthsonprop 29743 spthonprop 29744 spthonepeq 29751 fh2 31620 homulass 31803 hoadddi 31804 hoadddir 31805 metf1o 37868 rngohomco 38087 rngoisoco 38095 op01dm 39355 paddss12 39991 wessf1ornlem 45345 elaa2 46394 smflimlem2 46932 |
| Copyright terms: Public domain | W3C validator |