MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2f1fvneq Structured version   Visualization version   GIF version

Theorem 2f1fvneq 7021
Description: If two one-to-one functions are applied on different arguments, also the values are different. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Assertion
Ref Expression
2f1fvneq (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌))

Proof of Theorem 2f1fvneq
StepHypRef Expression
1 f1veqaeq 7018 . . . . 5 ((𝐹:𝐶1-1𝐷 ∧ (𝐴𝐶𝐵𝐶)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
21adantll 712 . . . 4 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
32necon3ad 3032 . . 3 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → (𝐴𝐵 → ¬ (𝐹𝐴) = (𝐹𝐵)))
433impia 1113 . 2 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → ¬ (𝐹𝐴) = (𝐹𝐵))
5 simpll 765 . . . . . . 7 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → 𝐸:𝐷1-1𝑅)
6 f1f 6578 . . . . . . . . . 10 (𝐹:𝐶1-1𝐷𝐹:𝐶𝐷)
7 ffvelrn 6852 . . . . . . . . . . . 12 ((𝐹:𝐶𝐷𝐴𝐶) → (𝐹𝐴) ∈ 𝐷)
8 ffvelrn 6852 . . . . . . . . . . . 12 ((𝐹:𝐶𝐷𝐵𝐶) → (𝐹𝐵) ∈ 𝐷)
97, 8anim12dan 620 . . . . . . . . . . 11 ((𝐹:𝐶𝐷 ∧ (𝐴𝐶𝐵𝐶)) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷))
109ex 415 . . . . . . . . . 10 (𝐹:𝐶𝐷 → ((𝐴𝐶𝐵𝐶) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷)))
116, 10syl 17 . . . . . . . . 9 (𝐹:𝐶1-1𝐷 → ((𝐴𝐶𝐵𝐶) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷)))
1211adantl 484 . . . . . . . 8 ((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) → ((𝐴𝐶𝐵𝐶) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷)))
1312imp 409 . . . . . . 7 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷))
14 f1veqaeq 7018 . . . . . . 7 ((𝐸:𝐷1-1𝑅 ∧ ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷)) → ((𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) → (𝐹𝐴) = (𝐹𝐵)))
155, 13, 14syl2anc 586 . . . . . 6 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) → (𝐹𝐴) = (𝐹𝐵)))
1615con3dimp 411 . . . . 5 ((((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) ∧ ¬ (𝐹𝐴) = (𝐹𝐵)) → ¬ (𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)))
17 eqeq12 2838 . . . . . . 7 (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → ((𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) ↔ 𝑋 = 𝑌))
1817notbid 320 . . . . . 6 (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → (¬ (𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) ↔ ¬ 𝑋 = 𝑌))
19 neqne 3027 . . . . . 6 𝑋 = 𝑌𝑋𝑌)
2018, 19syl6bi 255 . . . . 5 (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → (¬ (𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) → 𝑋𝑌))
2116, 20syl5com 31 . . . 4 ((((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) ∧ ¬ (𝐹𝐴) = (𝐹𝐵)) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌))
2221ex 415 . . 3 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → (¬ (𝐹𝐴) = (𝐹𝐵) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌)))
23223adant3 1128 . 2 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → (¬ (𝐹𝐴) = (𝐹𝐵) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌)))
244, 23mpd 15 1 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wf 6354  1-1wf1 6355  cfv 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fv 6366
This theorem is referenced by:  usgr2pthlem  27547
  Copyright terms: Public domain W3C validator