MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2f1fvneq Structured version   Visualization version   GIF version

Theorem 2f1fvneq 7297
Description: If two one-to-one functions are applied on different arguments, also the values are different. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Assertion
Ref Expression
2f1fvneq (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌))

Proof of Theorem 2f1fvneq
StepHypRef Expression
1 f1veqaeq 7294 . . . . 5 ((𝐹:𝐶1-1𝐷 ∧ (𝐴𝐶𝐵𝐶)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
21adantll 713 . . . 4 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
32necon3ad 2959 . . 3 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → (𝐴𝐵 → ¬ (𝐹𝐴) = (𝐹𝐵)))
433impia 1117 . 2 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → ¬ (𝐹𝐴) = (𝐹𝐵))
5 simpll 766 . . . . . . 7 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → 𝐸:𝐷1-1𝑅)
6 f1f 6817 . . . . . . . . . 10 (𝐹:𝐶1-1𝐷𝐹:𝐶𝐷)
7 ffvelcdm 7115 . . . . . . . . . . . 12 ((𝐹:𝐶𝐷𝐴𝐶) → (𝐹𝐴) ∈ 𝐷)
8 ffvelcdm 7115 . . . . . . . . . . . 12 ((𝐹:𝐶𝐷𝐵𝐶) → (𝐹𝐵) ∈ 𝐷)
97, 8anim12dan 618 . . . . . . . . . . 11 ((𝐹:𝐶𝐷 ∧ (𝐴𝐶𝐵𝐶)) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷))
109ex 412 . . . . . . . . . 10 (𝐹:𝐶𝐷 → ((𝐴𝐶𝐵𝐶) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷)))
116, 10syl 17 . . . . . . . . 9 (𝐹:𝐶1-1𝐷 → ((𝐴𝐶𝐵𝐶) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷)))
1211adantl 481 . . . . . . . 8 ((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) → ((𝐴𝐶𝐵𝐶) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷)))
1312imp 406 . . . . . . 7 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷))
14 f1veqaeq 7294 . . . . . . 7 ((𝐸:𝐷1-1𝑅 ∧ ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷)) → ((𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) → (𝐹𝐴) = (𝐹𝐵)))
155, 13, 14syl2anc 583 . . . . . 6 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) → (𝐹𝐴) = (𝐹𝐵)))
1615con3dimp 408 . . . . 5 ((((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) ∧ ¬ (𝐹𝐴) = (𝐹𝐵)) → ¬ (𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)))
17 eqeq12 2757 . . . . . . 7 (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → ((𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) ↔ 𝑋 = 𝑌))
1817notbid 318 . . . . . 6 (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → (¬ (𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) ↔ ¬ 𝑋 = 𝑌))
19 neqne 2954 . . . . . 6 𝑋 = 𝑌𝑋𝑌)
2018, 19biimtrdi 253 . . . . 5 (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → (¬ (𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) → 𝑋𝑌))
2116, 20syl5com 31 . . . 4 ((((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) ∧ ¬ (𝐹𝐴) = (𝐹𝐵)) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌))
2221ex 412 . . 3 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → (¬ (𝐹𝐴) = (𝐹𝐵) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌)))
23223adant3 1132 . 2 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → (¬ (𝐹𝐴) = (𝐹𝐵) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌)))
244, 23mpd 15 1 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wf 6569  1-1wf1 6570  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581
This theorem is referenced by:  usgr2pthlem  29799
  Copyright terms: Public domain W3C validator