|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > syl3an2br | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| syl3an2br.1 | ⊢ (𝜒 ↔ 𝜑) | 
| syl3an2br.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | 
| Ref | Expression | 
|---|---|
| syl3an2br | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3an2br.1 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜑 → 𝜒) | 
| 3 | syl3an2br.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl3an2 1165 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: igenval 38068 | 
| Copyright terms: Public domain | W3C validator |