Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl3an2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
Ref | Expression |
---|---|
syl3an2.1 | ⊢ (𝜑 → 𝜒) |
syl3an2.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an2 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | 3anim2i 1151 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | syl3an2.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl 17 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
Copyright terms: Public domain | W3C validator |