Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenval Structured version   Visualization version   GIF version

Theorem igenval 38121
Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
igenval.1 𝐺 = (1st𝑅)
igenval.2 𝑋 = ran 𝐺
Assertion
Ref Expression
igenval ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
Distinct variable groups:   𝑅,𝑗   𝑆,𝑗   𝑗,𝑋
Allowed substitution hint:   𝐺(𝑗)

Proof of Theorem igenval
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 igenval.1 . . . . . 6 𝐺 = (1st𝑅)
2 igenval.2 . . . . . 6 𝑋 = ran 𝐺
31, 2rngoidl 38084 . . . . 5 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
4 sseq2 3957 . . . . . 6 (𝑗 = 𝑋 → (𝑆𝑗𝑆𝑋))
54rspcev 3573 . . . . 5 ((𝑋 ∈ (Idl‘𝑅) ∧ 𝑆𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
63, 5sylan 580 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
7 rabn0 4338 . . . 4 ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅ ↔ ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
86, 7sylibr 234 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅)
9 intex 5284 . . 3 ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅ ↔ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V)
108, 9sylib 218 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V)
111fvexi 6842 . . . . . 6 𝐺 ∈ V
1211rnex 7846 . . . . 5 ran 𝐺 ∈ V
132, 12eqeltri 2829 . . . 4 𝑋 ∈ V
1413elpw2 5274 . . 3 (𝑆 ∈ 𝒫 𝑋𝑆𝑋)
15 simpl 482 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑟 = 𝑅)
1615fveq2d 6832 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (Idl‘𝑟) = (Idl‘𝑅))
17 sseq1 3956 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝑗𝑆𝑗))
1817adantl 481 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑠𝑗𝑆𝑗))
1916, 18rabeqbidv 3414 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗} = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
2019inteqd 4902 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗} = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
21 fveq2 6828 . . . . . . . 8 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
2221, 1eqtr4di 2786 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
2322rneqd 5882 . . . . . 6 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
2423, 2eqtr4di 2786 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
2524pweqd 4566 . . . 4 (𝑟 = 𝑅 → 𝒫 ran (1st𝑟) = 𝒫 𝑋)
26 df-igen 38120 . . . 4 IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st𝑟) ↦ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗})
2720, 25, 26ovmpox 7505 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ 𝒫 𝑋 {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
2814, 27syl3an2br 1409 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋 {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
2910, 28mpd3an3 1464 1 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057  {crab 3396  Vcvv 3437  wss 3898  c0 4282  𝒫 cpw 4549   cint 4897  ran crn 5620  cfv 6486  (class class class)co 7352  1st c1st 7925  RingOpscrngo 37954  Idlcidl 38067   IdlGen cigen 38119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-grpo 30475  df-gid 30476  df-ablo 30527  df-rngo 37955  df-idl 38070  df-igen 38120
This theorem is referenced by:  igenss  38122  igenidl  38123  igenmin  38124  igenidl2  38125  igenval2  38126
  Copyright terms: Public domain W3C validator