![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > igenval | Structured version Visualization version GIF version |
Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
igenval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
igenval.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
igenval | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | igenval.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | igenval.2 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
3 | 1, 2 | rngoidl 38011 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
4 | sseq2 4022 | . . . . . 6 ⊢ (𝑗 = 𝑋 → (𝑆 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑋)) | |
5 | 4 | rspcev 3622 | . . . . 5 ⊢ ((𝑋 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) |
6 | 3, 5 | sylan 580 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) |
7 | rabn0 4395 | . . . 4 ⊢ ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅ ↔ ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) | |
8 | 6, 7 | sylibr 234 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅) |
9 | intex 5350 | . . 3 ⊢ ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅ ↔ ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) | |
10 | 8, 9 | sylib 218 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) |
11 | 1 | fvexi 6921 | . . . . . 6 ⊢ 𝐺 ∈ V |
12 | 11 | rnex 7933 | . . . . 5 ⊢ ran 𝐺 ∈ V |
13 | 2, 12 | eqeltri 2835 | . . . 4 ⊢ 𝑋 ∈ V |
14 | 13 | elpw2 5340 | . . 3 ⊢ (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋) |
15 | simpl 482 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 𝑟 = 𝑅) | |
16 | 15 | fveq2d 6911 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (Idl‘𝑟) = (Idl‘𝑅)) |
17 | sseq1 4021 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑗)) | |
18 | 17 | adantl 481 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑠 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑗)) |
19 | 16, 18 | rabeqbidv 3452 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗} = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
20 | 19 | inteqd 4956 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ∩ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗} = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
21 | fveq2 6907 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = (1st ‘𝑅)) | |
22 | 21, 1 | eqtr4di 2793 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = 𝐺) |
23 | 22 | rneqd 5952 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = ran 𝐺) |
24 | 23, 2 | eqtr4di 2793 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = 𝑋) |
25 | 24 | pweqd 4622 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝒫 ran (1st ‘𝑟) = 𝒫 𝑋) |
26 | df-igen 38047 | . . . 4 ⊢ IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st ‘𝑟) ↦ ∩ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗}) | |
27 | 20, 25, 26 | ovmpox 7586 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ 𝒫 𝑋 ∧ ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
28 | 14, 27 | syl3an2br 1406 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ∧ ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
29 | 10, 28 | mpd3an3 1461 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 {crab 3433 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 ∩ cint 4951 ran crn 5690 ‘cfv 6563 (class class class)co 7431 1st c1st 8011 RingOpscrngo 37881 Idlcidl 37994 IdlGen cigen 38046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-grpo 30522 df-gid 30523 df-ablo 30574 df-rngo 37882 df-idl 37997 df-igen 38047 |
This theorem is referenced by: igenss 38049 igenidl 38050 igenmin 38051 igenidl2 38052 igenval2 38053 |
Copyright terms: Public domain | W3C validator |