| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > igenval | Structured version Visualization version GIF version | ||
| Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| igenval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| igenval.2 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| igenval | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | igenval.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | igenval.2 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
| 3 | 1, 2 | rngoidl 38053 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
| 4 | sseq2 3990 | . . . . . 6 ⊢ (𝑗 = 𝑋 → (𝑆 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑋)) | |
| 5 | 4 | rspcev 3606 | . . . . 5 ⊢ ((𝑋 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) |
| 6 | 3, 5 | sylan 580 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) |
| 7 | rabn0 4369 | . . . 4 ⊢ ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅ ↔ ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) | |
| 8 | 6, 7 | sylibr 234 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅) |
| 9 | intex 5319 | . . 3 ⊢ ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅ ↔ ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) | |
| 10 | 8, 9 | sylib 218 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) |
| 11 | 1 | fvexi 6895 | . . . . . 6 ⊢ 𝐺 ∈ V |
| 12 | 11 | rnex 7911 | . . . . 5 ⊢ ran 𝐺 ∈ V |
| 13 | 2, 12 | eqeltri 2831 | . . . 4 ⊢ 𝑋 ∈ V |
| 14 | 13 | elpw2 5309 | . . 3 ⊢ (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋) |
| 15 | simpl 482 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 𝑟 = 𝑅) | |
| 16 | 15 | fveq2d 6885 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (Idl‘𝑟) = (Idl‘𝑅)) |
| 17 | sseq1 3989 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑗)) | |
| 18 | 17 | adantl 481 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑠 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑗)) |
| 19 | 16, 18 | rabeqbidv 3439 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗} = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 20 | 19 | inteqd 4932 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ∩ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗} = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 21 | fveq2 6881 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = (1st ‘𝑅)) | |
| 22 | 21, 1 | eqtr4di 2789 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = 𝐺) |
| 23 | 22 | rneqd 5923 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = ran 𝐺) |
| 24 | 23, 2 | eqtr4di 2789 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = 𝑋) |
| 25 | 24 | pweqd 4597 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝒫 ran (1st ‘𝑟) = 𝒫 𝑋) |
| 26 | df-igen 38089 | . . . 4 ⊢ IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st ‘𝑟) ↦ ∩ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗}) | |
| 27 | 20, 25, 26 | ovmpox 7565 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ 𝒫 𝑋 ∧ ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 28 | 14, 27 | syl3an2br 1409 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ∧ ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 29 | 10, 28 | mpd3an3 1464 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 {crab 3420 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ∩ cint 4927 ran crn 5660 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 RingOpscrngo 37923 Idlcidl 38036 IdlGen cigen 38088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-grpo 30479 df-gid 30480 df-ablo 30531 df-rngo 37924 df-idl 38039 df-igen 38089 |
| This theorem is referenced by: igenss 38091 igenidl 38092 igenmin 38093 igenidl2 38094 igenval2 38095 |
| Copyright terms: Public domain | W3C validator |