Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > igenval | Structured version Visualization version GIF version |
Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
igenval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
igenval.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
igenval | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | igenval.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | igenval.2 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
3 | 1, 2 | rngoidl 36109 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
4 | sseq2 3943 | . . . . . 6 ⊢ (𝑗 = 𝑋 → (𝑆 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑋)) | |
5 | 4 | rspcev 3552 | . . . . 5 ⊢ ((𝑋 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) |
6 | 3, 5 | sylan 579 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) |
7 | rabn0 4316 | . . . 4 ⊢ ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅ ↔ ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) | |
8 | 6, 7 | sylibr 233 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅) |
9 | intex 5256 | . . 3 ⊢ ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅ ↔ ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) | |
10 | 8, 9 | sylib 217 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) |
11 | 1 | fvexi 6770 | . . . . . 6 ⊢ 𝐺 ∈ V |
12 | 11 | rnex 7733 | . . . . 5 ⊢ ran 𝐺 ∈ V |
13 | 2, 12 | eqeltri 2835 | . . . 4 ⊢ 𝑋 ∈ V |
14 | 13 | elpw2 5264 | . . 3 ⊢ (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋) |
15 | simpl 482 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 𝑟 = 𝑅) | |
16 | 15 | fveq2d 6760 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (Idl‘𝑟) = (Idl‘𝑅)) |
17 | sseq1 3942 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑗)) | |
18 | 17 | adantl 481 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑠 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑗)) |
19 | 16, 18 | rabeqbidv 3410 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗} = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
20 | 19 | inteqd 4881 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ∩ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗} = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
21 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = (1st ‘𝑅)) | |
22 | 21, 1 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = 𝐺) |
23 | 22 | rneqd 5836 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = ran 𝐺) |
24 | 23, 2 | eqtr4di 2797 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = 𝑋) |
25 | 24 | pweqd 4549 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝒫 ran (1st ‘𝑟) = 𝒫 𝑋) |
26 | df-igen 36145 | . . . 4 ⊢ IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st ‘𝑟) ↦ ∩ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗}) | |
27 | 20, 25, 26 | ovmpox 7404 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ 𝒫 𝑋 ∧ ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
28 | 14, 27 | syl3an2br 1405 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ∧ ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
29 | 10, 28 | mpd3an3 1460 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ∩ cint 4876 ran crn 5581 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 RingOpscrngo 35979 Idlcidl 36092 IdlGen cigen 36144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-grpo 28756 df-gid 28757 df-ablo 28808 df-rngo 35980 df-idl 36095 df-igen 36145 |
This theorem is referenced by: igenss 36147 igenidl 36148 igenmin 36149 igenidl2 36150 igenval2 36151 |
Copyright terms: Public domain | W3C validator |