|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > tbw-negdf | Structured version Visualization version GIF version | ||
| Description: The definition of negation, in terms of → and ⊥. (Contributed by Anthony Hart, 15-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| tbw-negdf | ⊢ (((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.21 123 | . . 3 ⊢ (¬ 𝜑 → (𝜑 → ⊥)) | |
| 2 | ax-1 6 | . . . . 5 ⊢ (¬ 𝜑 → ((𝜑 → ⊥) → ¬ 𝜑)) | |
| 3 | falim 1556 | . . . . 5 ⊢ (⊥ → ((𝜑 → ⊥) → ¬ 𝜑)) | |
| 4 | 2, 3 | ja 186 | . . . 4 ⊢ ((𝜑 → ⊥) → ((𝜑 → ⊥) → ¬ 𝜑)) | 
| 5 | 4 | pm2.43i 52 | . . 3 ⊢ ((𝜑 → ⊥) → ¬ 𝜑) | 
| 6 | 1, 5 | impbii 209 | . 2 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) | 
| 7 | tbw-bijust 1697 | . 2 ⊢ ((¬ 𝜑 ↔ (𝜑 → ⊥)) ↔ (((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥)) | |
| 8 | 6, 7 | mpbi 230 | 1 ⊢ (((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ⊥wfal 1551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-tru 1542 df-fal 1552 | 
| This theorem is referenced by: re1luk2 1710 re1luk3 1711 | 
| Copyright terms: Public domain | W3C validator |