Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tbw-negdf | Structured version Visualization version GIF version |
Description: The definition of negation, in terms of → and ⊥. (Contributed by Anthony Hart, 15-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tbw-negdf | ⊢ (((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 123 | . . 3 ⊢ (¬ 𝜑 → (𝜑 → ⊥)) | |
2 | ax-1 6 | . . . . 5 ⊢ (¬ 𝜑 → ((𝜑 → ⊥) → ¬ 𝜑)) | |
3 | falim 1556 | . . . . 5 ⊢ (⊥ → ((𝜑 → ⊥) → ¬ 𝜑)) | |
4 | 2, 3 | ja 186 | . . . 4 ⊢ ((𝜑 → ⊥) → ((𝜑 → ⊥) → ¬ 𝜑)) |
5 | 4 | pm2.43i 52 | . . 3 ⊢ ((𝜑 → ⊥) → ¬ 𝜑) |
6 | 1, 5 | impbii 208 | . 2 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) |
7 | tbw-bijust 1702 | . 2 ⊢ ((¬ 𝜑 ↔ (𝜑 → ⊥)) ↔ (((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥)) | |
8 | 6, 7 | mpbi 229 | 1 ⊢ (((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 |
This theorem is referenced by: re1luk2 1715 re1luk3 1716 |
Copyright terms: Public domain | W3C validator |