MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  re1luk3 Structured version   Visualization version   GIF version

Theorem re1luk3 1716
Description: luk-3 1661 derived from the Tarski-Bernays-Wajsberg axioms.

This theorem, along with re1luk1 1714 and re1luk2 1715 proves that tbw-ax1 1704, tbw-ax2 1705, tbw-ax3 1706, and tbw-ax4 1707, with ax-mp 5 can be used as a complete axiom system for all of propositional calculus. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
re1luk3 (𝜑 → (¬ 𝜑𝜓))

Proof of Theorem re1luk3
StepHypRef Expression
1 tbw-negdf 1703 . . 3 (((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥)
2 tbwlem5 1713 . . 3 ((((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) → (¬ 𝜑 → (𝜑 → ⊥)))
31, 2ax-mp 5 . 2 𝜑 → (𝜑 → ⊥))
4 tbw-ax4 1707 . . . 4 (⊥ → 𝜓)
5 tbw-ax1 1704 . . . . 5 ((𝜑 → ⊥) → ((⊥ → 𝜓) → (𝜑𝜓)))
6 tbwlem1 1709 . . . . 5 (((𝜑 → ⊥) → ((⊥ → 𝜓) → (𝜑𝜓))) → ((⊥ → 𝜓) → ((𝜑 → ⊥) → (𝜑𝜓))))
75, 6ax-mp 5 . . . 4 ((⊥ → 𝜓) → ((𝜑 → ⊥) → (𝜑𝜓)))
84, 7ax-mp 5 . . 3 ((𝜑 → ⊥) → (𝜑𝜓))
9 tbwlem1 1709 . . 3 (((𝜑 → ⊥) → (𝜑𝜓)) → (𝜑 → ((𝜑 → ⊥) → 𝜓)))
108, 9ax-mp 5 . 2 (𝜑 → ((𝜑 → ⊥) → 𝜓))
11 tbw-ax1 1704 . 2 ((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → 𝜓) → (¬ 𝜑𝜓)))
123, 10, 11mpsyl 68 1 (𝜑 → (¬ 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-fal 1552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator