|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > re1luk3 | Structured version Visualization version GIF version | ||
| Description: luk-3 1656 derived from the Tarski-Bernays-Wajsberg
axioms. This theorem, along with re1luk1 1709 and re1luk2 1710 proves that tbw-ax1 1699, tbw-ax2 1700, tbw-ax3 1701, and tbw-ax4 1702, with ax-mp 5 can be used as a complete axiom system for all of propositional calculus. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| re1luk3 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tbw-ax4 1702 | . . . 4 ⊢ (⊥ → 𝜓) | |
| 2 | tbw-ax1 1699 | . . . . 5 ⊢ ((𝜑 → ⊥) → ((⊥ → 𝜓) → (𝜑 → 𝜓))) | |
| 3 | tbwlem1 1704 | . . . . 5 ⊢ (((𝜑 → ⊥) → ((⊥ → 𝜓) → (𝜑 → 𝜓))) → ((⊥ → 𝜓) → ((𝜑 → ⊥) → (𝜑 → 𝜓)))) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ((⊥ → 𝜓) → ((𝜑 → ⊥) → (𝜑 → 𝜓))) | 
| 5 | 1, 4 | ax-mp 5 | . . 3 ⊢ ((𝜑 → ⊥) → (𝜑 → 𝜓)) | 
| 6 | tbwlem1 1704 | . . 3 ⊢ (((𝜑 → ⊥) → (𝜑 → 𝜓)) → (𝜑 → ((𝜑 → ⊥) → 𝜓))) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (𝜑 → ((𝜑 → ⊥) → 𝜓)) | 
| 8 | tbw-negdf 1698 | . . . 4 ⊢ (((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) | |
| 9 | tbwlem5 1708 | . . . 4 ⊢ ((((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) → (¬ 𝜑 → (𝜑 → ⊥))) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ (¬ 𝜑 → (𝜑 → ⊥)) | 
| 11 | tbw-ax1 1699 | . . 3 ⊢ ((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → 𝜓) → (¬ 𝜑 → 𝜓))) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ (((𝜑 → ⊥) → 𝜓) → (¬ 𝜑 → 𝜓)) | 
| 13 | 7, 12 | tbwsyl 1703 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ⊥wfal 1551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-tru 1542 df-fal 1552 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |