Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > re1luk3 | Structured version Visualization version GIF version |
Description: luk-3 1661 derived from the Tarski-Bernays-Wajsberg
axioms.
This theorem, along with re1luk1 1714 and re1luk2 1715 proves that tbw-ax1 1704, tbw-ax2 1705, tbw-ax3 1706, and tbw-ax4 1707, with ax-mp 5 can be used as a complete axiom system for all of propositional calculus. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
re1luk3 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tbw-negdf 1703 | . . 3 ⊢ (((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) | |
2 | tbwlem5 1713 | . . 3 ⊢ ((((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) → (¬ 𝜑 → (𝜑 → ⊥))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (¬ 𝜑 → (𝜑 → ⊥)) |
4 | tbw-ax4 1707 | . . . 4 ⊢ (⊥ → 𝜓) | |
5 | tbw-ax1 1704 | . . . . 5 ⊢ ((𝜑 → ⊥) → ((⊥ → 𝜓) → (𝜑 → 𝜓))) | |
6 | tbwlem1 1709 | . . . . 5 ⊢ (((𝜑 → ⊥) → ((⊥ → 𝜓) → (𝜑 → 𝜓))) → ((⊥ → 𝜓) → ((𝜑 → ⊥) → (𝜑 → 𝜓)))) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ((⊥ → 𝜓) → ((𝜑 → ⊥) → (𝜑 → 𝜓))) |
8 | 4, 7 | ax-mp 5 | . . 3 ⊢ ((𝜑 → ⊥) → (𝜑 → 𝜓)) |
9 | tbwlem1 1709 | . . 3 ⊢ (((𝜑 → ⊥) → (𝜑 → 𝜓)) → (𝜑 → ((𝜑 → ⊥) → 𝜓))) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ (𝜑 → ((𝜑 → ⊥) → 𝜓)) |
11 | tbw-ax1 1704 | . 2 ⊢ ((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → 𝜓) → (¬ 𝜑 → 𝜓))) | |
12 | 3, 10, 11 | mpsyl 68 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |