MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tbwlem2 Structured version   Visualization version   GIF version

Theorem tbwlem2 1705
Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tbwlem2 ((𝜑 → (𝜓 → ⊥)) → (((𝜑𝜒) → 𝜃) → (𝜓𝜃)))

Proof of Theorem tbwlem2
StepHypRef Expression
1 tbw-ax1 1699 . . 3 ((𝜑 → (𝜓 → ⊥)) → (((𝜓 → ⊥) → 𝜒) → (𝜑𝜒)))
2 tbw-ax4 1702 . . . . . 6 (⊥ → 𝜒)
3 tbw-ax1 1699 . . . . . . 7 ((𝜓 → ⊥) → ((⊥ → 𝜒) → (𝜓𝜒)))
4 tbwlem1 1704 . . . . . . 7 (((𝜓 → ⊥) → ((⊥ → 𝜒) → (𝜓𝜒))) → ((⊥ → 𝜒) → ((𝜓 → ⊥) → (𝜓𝜒))))
53, 4ax-mp 5 . . . . . 6 ((⊥ → 𝜒) → ((𝜓 → ⊥) → (𝜓𝜒)))
62, 5ax-mp 5 . . . . 5 ((𝜓 → ⊥) → (𝜓𝜒))
7 tbwlem1 1704 . . . . 5 (((𝜓 → ⊥) → (𝜓𝜒)) → (𝜓 → ((𝜓 → ⊥) → 𝜒)))
86, 7ax-mp 5 . . . 4 (𝜓 → ((𝜓 → ⊥) → 𝜒))
9 tbw-ax1 1699 . . . 4 ((𝜓 → ((𝜓 → ⊥) → 𝜒)) → ((((𝜓 → ⊥) → 𝜒) → (𝜑𝜒)) → (𝜓 → (𝜑𝜒))))
108, 9ax-mp 5 . . 3 ((((𝜓 → ⊥) → 𝜒) → (𝜑𝜒)) → (𝜓 → (𝜑𝜒)))
111, 10tbwsyl 1703 . 2 ((𝜑 → (𝜓 → ⊥)) → (𝜓 → (𝜑𝜒)))
12 tbw-ax1 1699 . 2 ((𝜓 → (𝜑𝜒)) → (((𝜑𝜒) → 𝜃) → (𝜓𝜃)))
1311, 12tbwsyl 1703 1 ((𝜑 → (𝜓 → ⊥)) → (((𝜑𝜒) → 𝜃) → (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-tru 1542  df-fal 1552
This theorem is referenced by:  tbwlem4  1707
  Copyright terms: Public domain W3C validator