Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tbwsyl | Structured version Visualization version GIF version |
Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tbwsyl.1 | ⊢ (𝜑 → 𝜓) |
tbwsyl.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
tbwsyl | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tbwsyl.2 | . 2 ⊢ (𝜓 → 𝜒) | |
2 | tbwsyl.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | tbw-ax1 1704 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: tbwlem1 1709 tbwlem2 1710 tbwlem3 1711 tbwlem4 1712 tbwlem5 1713 re1luk2 1715 |
Copyright terms: Public domain | W3C validator |