Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nannot | Structured version Visualization version GIF version |
Description: Negation in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Revised by Wolf Lammen, 26-Jun-2020.) |
Ref | Expression |
---|---|
nannot | ⊢ (¬ 𝜑 ↔ (𝜑 ⊼ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnan2 1486 | . 2 ⊢ ((𝜑 ⊼ 𝜑) ↔ (𝜑 → ¬ 𝜑)) | |
2 | pm4.8 392 | . 2 ⊢ ((𝜑 → ¬ 𝜑) ↔ ¬ 𝜑) | |
3 | 1, 2 | bitr2i 275 | 1 ⊢ (¬ 𝜑 ↔ (𝜑 ⊼ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ⊼ wnan 1483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-nan 1484 |
This theorem is referenced by: nanbi 1492 trunantru 1580 falnanfal 1583 nic-dfneg 1674 andnand1 34517 imnand2 34518 |
Copyright terms: Public domain | W3C validator |