|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nannot | Structured version Visualization version GIF version | ||
| Description: Negation in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.) Use dfnan2 1494. (Revised by Wolf Lammen, 26-Jun-2020.) | 
| Ref | Expression | 
|---|---|
| nannot | ⊢ (¬ 𝜑 ↔ (𝜑 ⊼ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfnan2 1494 | . 2 ⊢ ((𝜑 ⊼ 𝜑) ↔ (𝜑 → ¬ 𝜑)) | |
| 2 | pm4.8 392 | . 2 ⊢ ((𝜑 → ¬ 𝜑) ↔ ¬ 𝜑) | |
| 3 | 1, 2 | bitr2i 276 | 1 ⊢ (¬ 𝜑 ↔ (𝜑 ⊼ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ⊼ wnan 1491 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 | 
| This theorem is referenced by: nanbi 1500 trunantru 1581 falnanfal 1584 nic-dfneg 1670 andnand1 36402 imnand2 36403 | 
| Copyright terms: Public domain | W3C validator |