| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tsxo3 | Structured version Visualization version GIF version | ||
| Description: A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
| Ref | Expression |
|---|---|
| tsxo3 | ⊢ (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ⊻ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsbi3 38142 | . 2 ⊢ (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) | |
| 2 | df-xor 1512 | . . . 4 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
| 3 | 2 | bicomi 224 | . . 3 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ⊻ 𝜓)) |
| 4 | 3 | orbi2i 913 | . 2 ⊢ (((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓)) ↔ ((𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ⊻ 𝜓))) |
| 5 | 1, 4 | sylib 218 | 1 ⊢ (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ⊻ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 848 ⊻ wxo 1511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 df-xor 1512 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |