Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tsxo3 Structured version   Visualization version   GIF version

Theorem tsxo3 36224
Description: A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
Assertion
Ref Expression
tsxo3 (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ (𝜑𝜓)))

Proof of Theorem tsxo3
StepHypRef Expression
1 tsbi3 36220 . 2 (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑𝜓)))
2 df-xor 1504 . . . 4 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
32bicomi 223 . . 3 (¬ (𝜑𝜓) ↔ (𝜑𝜓))
43orbi2i 909 . 2 (((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑𝜓)) ↔ ((𝜑 ∨ ¬ 𝜓) ∨ (𝜑𝜓)))
51, 4sylib 217 1 (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 843  wxo 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844  df-xor 1504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator