HomeHome Metamath Proof Explorer
Theorem List (p. 374 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 37301-37400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhlatl 37301 A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.)
(𝐾 ∈ HL → 𝐾 ∈ AtLat)
 
Theoremhlol 37302 A Hilbert lattice is an ortholattice. (Contributed by NM, 20-Oct-2011.)
(𝐾 ∈ HL → 𝐾 ∈ OL)
 
Theoremhlop 37303 A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011.)
(𝐾 ∈ HL → 𝐾 ∈ OP)
 
Theoremhllat 37304 A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011.)
(𝐾 ∈ HL → 𝐾 ∈ Lat)
 
Theoremhllatd 37305 Deduction form of hllat 37304. A Hilbert lattice is a lattice. (Contributed by BJ, 14-Aug-2022.)
(𝜑𝐾 ∈ HL)       (𝜑𝐾 ∈ Lat)
 
Theoremhlomcmat 37306 A Hilbert lattice is orthomodular, complete, and atomic. (Contributed by NM, 5-Nov-2012.)
(𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
 
Theoremhlpos 37307 A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.)
(𝐾 ∈ HL → 𝐾 ∈ Poset)
 
Theoremhlatjcl 37308 Closure of join operation. Frequently-used special case of latjcl 18072 for atoms. (Contributed by NM, 15-Jun-2012.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 𝑌) ∈ 𝐵)
 
Theoremhlatjcom 37309 Commutatitivity of join operation. Frequently-used special case of latjcom 18080 for atoms. (Contributed by NM, 15-Jun-2012.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 𝑌) = (𝑌 𝑋))
 
Theoremhlatjidm 37310 Idempotence of join operation. Frequently-used special case of latjcom 18080 for atoms. (Contributed by NM, 15-Jul-2012.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 𝑋) = 𝑋)
 
Theoremhlatjass 37311 Lattice join is associative. Frequently-used special case of latjass 18116 for atoms. (Contributed by NM, 27-Jul-2012.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
 
Theoremhlatj12 37312 Swap 1st and 2nd members of lattice join. Frequently-used special case of latj32 18118 for atoms. (Contributed by NM, 4-Jun-2012.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 (𝑄 𝑅)) = (𝑄 (𝑃 𝑅)))
 
Theoremhlatj32 37313 Swap 2nd and 3rd members of lattice join. Frequently-used special case of latj32 18118 for atoms. (Contributed by NM, 21-Jul-2012.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))
 
Theoremhlatjrot 37314 Rotate lattice join of 3 classes. Frequently-used special case of latjrot 18121 for atoms. (Contributed by NM, 2-Aug-2012.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = ((𝑅 𝑃) 𝑄))
 
Theoremhlatj4 37315 Rearrangement of lattice join of 4 classes. Frequently-used special case of latj4 18122 for atoms. (Contributed by NM, 9-Aug-2012.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑅) (𝑄 𝑆)))
 
Theoremhlatlej1 37316 A join's first argument is less than or equal to the join. Special case of latlej1 18081 to show an atom is on a line. (Contributed by NM, 15-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 (𝑃 𝑄))
 
Theoremhlatlej2 37317 A join's second argument is less than or equal to the join. Special case of latlej2 18082 to show an atom is on a line. (Contributed by NM, 15-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
 
TheoremglbconN 37318* De Morgan's law for GLB and LUB. This holds in any complete ortholattice, although we assume HL for convenience. (Contributed by NM, 17-Jan-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝑈 = (lub‘𝐾)    &   𝐺 = (glb‘𝐾)    &    = (oc‘𝐾)       ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝐺𝑆) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
 
TheoremglbconxN 37319* De Morgan's law for GLB and LUB. Index-set version of glbconN 37318, where we read 𝑆 as 𝑆(𝑖). (Contributed by NM, 17-Jan-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝑈 = (lub‘𝐾)    &   𝐺 = (glb‘𝐾)    &    = (oc‘𝐾)       ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐺‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)})))
 
Theorematnlej1 37320 If an atom is not less than or equal to the join of two others, it is not equal to either. (This also holds for non-atoms, but in this form it is convenient.) (Contributed by NM, 8-Jan-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝑄)
 
Theorematnlej2 37321 If an atom is not less than or equal to the join of two others, it is not equal to either. (This also holds for non-atoms, but in this form it is convenient.) (Contributed by NM, 8-Jan-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝑅)
 
Theoremhlsuprexch 37322* A Hilbert lattice has the superposition and exchange properties. (Contributed by NM, 13-Nov-2011.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
 
Theoremhlexch1 37323 A Hilbert lattice has the exchange property. (Contributed by NM, 13-Nov-2011.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))
 
Theoremhlexch2 37324 A Hilbert lattice has the exchange property. (Contributed by NM, 6-May-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) → 𝑄 (𝑃 𝑋)))
 
Theoremhlexchb1 37325 A Hilbert lattice has the exchange property. (Contributed by NM, 16-Nov-2011.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
 
Theoremhlexchb2 37326 A Hilbert lattice has the exchange property. (Contributed by NM, 22-Jun-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) ↔ (𝑃 𝑋) = (𝑄 𝑋)))
 
Theoremhlsupr 37327* A Hilbert lattice has the superposition property. Theorem 13.2 in [Crawley] p. 107. (Contributed by NM, 30-Jan-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
 
Theoremhlsupr2 37328* A Hilbert lattice has the superposition property. (Contributed by NM, 25-Nov-2012.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟))
 
Theoremhlhgt4 37329* A Hilbert lattice has a height of at least 4. (Contributed by NM, 4-Dec-2011.)
𝐵 = (Base‘𝐾)    &    < = (lt‘𝐾)    &    0 = (0.‘𝐾)    &    1 = (1.‘𝐾)       (𝐾 ∈ HL → ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))
 
Theoremhlhgt2 37330* A Hilbert lattice has a height of at least 2. (Contributed by NM, 4-Dec-2011.)
𝐵 = (Base‘𝐾)    &    < = (lt‘𝐾)    &    0 = (0.‘𝐾)    &    1 = (1.‘𝐾)       (𝐾 ∈ HL → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 ))
 
Theoremhl0lt1N 37331 Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011.) (New usage is discouraged.)
< = (lt‘𝐾)    &    0 = (0.‘𝐾)    &    1 = (1.‘𝐾)       (𝐾 ∈ HL → 0 < 1 )
 
Theoremhlexch3 37332 A Hilbert lattice has the exchange property. (atexch 30644 analog.) (Contributed by NM, 15-Nov-2011.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))
 
Theoremhlexch4N 37333 A Hilbert lattice has the exchange property. Part of Definition 7.8 of [MaedaMaeda] p. 32. (Contributed by NM, 15-Nov-2011.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃 (𝑋 𝑄) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
 
Theoremhlatexchb1 37334 A version of hlexchb1 37325 for atoms. (Contributed by NM, 15-Nov-2011.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑄) ↔ (𝑅 𝑃) = (𝑅 𝑄)))
 
Theoremhlatexchb2 37335 A version of hlexchb2 37326 for atoms. (Contributed by NM, 7-Feb-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
 
Theoremhlatexch1 37336 Atom exchange property. (Contributed by NM, 7-Jan-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑄) → 𝑄 (𝑅 𝑃)))
 
Theoremhlatexch2 37337 Atom exchange property. (Contributed by NM, 8-Jan-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑄 𝑅) → 𝑄 (𝑃 𝑅)))
 
TheoremhlatmstcOLDN 37338* An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in [Kalmbach] p. 140; also remark in [BeltramettiCassinelli] p. 98. (hatomistici 30625 analog.) (Contributed by NM, 21-Oct-2011.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝑈 = (lub‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑈‘{𝑦𝐴𝑦 𝑋}) = 𝑋)
 
Theoremhlatle 37339* The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 30634 analog.) (Contributed by NM, 4-Nov-2011.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
 
Theoremhlateq 37340* The equality of two Hilbert lattice elements is determined by the atoms under them. (chrelat4i 30636 analog.) (Contributed by NM, 24-May-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ 𝑋 = 𝑌))
 
Theoremhlrelat1 37341* An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 30626, with swapped, analog.) (Contributed by NM, 4-Dec-2011.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    < = (lt‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
 
Theoremhlrelat5N 37342* An atomistic lattice with 0 is relatively atomic, using the definition in Remark 2 of [Kalmbach] p. 149. (Contributed by NM, 21-Oct-2011.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    < = (lt‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌))
 
Theoremhlrelat 37343* A Hilbert lattice is relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 30627 analog.) (Contributed by NM, 4-Feb-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    < = (lt‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
 
Theoremhlrelat2 37344* A consequence of relative atomicity. (chrelat2i 30628 analog.) (Contributed by NM, 5-Feb-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
 
TheoremexatleN 37345 A condition for an atom to be less than or equal to a lattice element. Part of proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅 𝑋𝑅 = 𝑃))
 
Theoremhl2at 37346* A Hilbert lattice has at least 2 atoms. (Contributed by NM, 5-Dec-2011.)
𝐴 = (Atoms‘𝐾)       (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
 
Theorematex 37347 At least one atom exists. (Contributed by NM, 15-Jul-2012.)
𝐴 = (Atoms‘𝐾)       (𝐾 ∈ HL → 𝐴 ≠ ∅)
 
TheoremintnatN 37348 If the intersection with a non-majorizing element is an atom, the intersecting element is not an atom. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (¬ 𝑌 𝑋 ∧ (𝑋 𝑌) ∈ 𝐴)) → ¬ 𝑌𝐴)
 
Theorem2llnne2N 37349 Condition implying that two intersecting lines are different. (Contributed by NM, 13-Jun-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑅 𝑄)) → (𝑅 𝑃) ≠ (𝑅 𝑄))
 
Theorem2llnneN 37350 Condition implying that two intersecting lines are different. (Contributed by NM, 29-May-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑅 𝑃) ≠ (𝑅 𝑄))
 
Theoremcvr1 37351 A Hilbert lattice has the covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 30618 analog.) (Contributed by NM, 17-Nov-2011.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
 
Theoremcvr2N 37352 Less-than and covers equivalence in a Hilbert lattice. (chcv2 30619 analog.) (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    < = (lt‘𝐾)    &    = (join‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → (𝑋 < (𝑋 𝑃) ↔ 𝑋𝐶(𝑋 𝑃)))
 
Theoremhlrelat3 37353* The Hilbert lattice is relatively atomic. Stronger version of hlrelat 37343. (Contributed by NM, 2-May-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    < = (lt‘𝐾)    &    = (join‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
 
Theoremcvrval3 37354* Binary relation expressing 𝑌 covers 𝑋. (Contributed by NM, 16-Jun-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
 
Theoremcvrval4N 37355* Binary relation expressing 𝑌 covers 𝑋. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    < = (lt‘𝐾)    &    = (join‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)))
 
Theoremcvrval5 37356* Binary relation expressing 𝑋 covers 𝑋 𝑌. (Contributed by NM, 7-Dec-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
 
Theoremcvrp 37357 A Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 30638 analog.) (Contributed by NM, 18-Nov-2011.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) = 0𝑋𝐶(𝑋 𝑃)))
 
Theorematcvr1 37358 An atom is covered by its join with a different atom. (Contributed by NM, 7-Feb-2012.)
= (join‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄𝑃𝐶(𝑃 𝑄)))
 
Theorematcvr2 37359 An atom is covered by its join with a different atom. (Contributed by NM, 7-Feb-2012.)
= (join‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄𝑃𝐶(𝑄 𝑃)))
 
Theoremcvrexchlem 37360 Lemma for cvrexch 37361. (cvexchlem 30631 analog.) (Contributed by NM, 18-Nov-2011.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
 
Theoremcvrexch 37361 A Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (cvexchi 30632 analog.) (Contributed by NM, 18-Nov-2011.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
 
Theoremcvratlem 37362 Lemma for cvrat 37363. (atcvatlem 30648 analog.) (Contributed by NM, 22-Nov-2011.)
𝐵 = (Base‘𝐾)    &    < = (lt‘𝐾)    &    = (join‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))
 
Theoremcvrat 37363 A nonzero Hilbert lattice element less than the join of two atoms is an atom. (atcvati 30649 analog.) (Contributed by NM, 22-Nov-2011.)
𝐵 = (Base‘𝐾)    &    < = (lt‘𝐾)    &    = (join‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑋 < (𝑃 𝑄)) → 𝑋𝐴))
 
Theoremltltncvr 37364 A chained strong ordering is not a covers relation. (Contributed by NM, 18-Jun-2012.)
𝐵 = (Base‘𝐾)    &    < = (lt‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)       ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → ¬ 𝑋𝐶𝑍))
 
Theoremltcvrntr 37365 Non-transitive condition for the covers relation. (Contributed by NM, 18-Jun-2012.)
𝐵 = (Base‘𝐾)    &    < = (lt‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)       ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍))
 
Theoremcvrntr 37366 The covers relation is not transitive. (cvntr 30555 analog.) (Contributed by NM, 18-Jun-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)       ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍))
 
Theorematcvr0eq 37367 The covers relation is not transitive. (atcv0eq 30642 analog.) (Contributed by NM, 29-Nov-2011.)
= (join‘𝐾)    &    0 = (0.‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
 
Theoremlnnat 37368 A line (the join of two distinct atoms) is not an atom. (Contributed by NM, 14-Jun-2012.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ ¬ (𝑃 𝑄) ∈ 𝐴))
 
Theorematcvrj0 37369 Two atoms covering the zero subspace are equal. (atcv1 30643 analog.) (Contributed by NM, 29-Nov-2011.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    0 = (0.‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = 0𝑃 = 𝑄))
 
Theoremcvrat2 37370 A Hilbert lattice element covered by the join of two distinct atoms is an atom. (atcvat2i 30650 analog.) (Contributed by NM, 30-Nov-2011.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ (𝑃𝑄𝑋𝐶(𝑃 𝑄))) → 𝑋𝐴)
 
TheorematcvrneN 37371 Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.)
= (join‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄𝑅)
 
Theorematcvrj1 37372 Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
 
Theorematcvrj2b 37373 Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑄𝑅𝑃 (𝑄 𝑅)) ↔ 𝑃𝐶(𝑄 𝑅)))
 
Theorematcvrj2 37374 Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
 
TheorematleneN 37375 Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑄𝑅)
 
Theorematltcvr 37376 An equivalence of less-than ordering and covers relation. (Contributed by NM, 7-Feb-2012.)
< = (lt‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) ↔ 𝑃𝐶(𝑄 𝑅)))
 
Theorematle 37377* Any nonzero element has an atom under it. (Contributed by NM, 28-Jun-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃𝑝𝐴 𝑝 𝑋)
 
Theorematlt 37378 Two atoms are unequal iff their join is greater than one of them. (Contributed by NM, 6-May-2012.)
< = (lt‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 < (𝑃 𝑄) ↔ 𝑃𝑄))
 
Theorematlelt 37379 Transfer less-than relation from one atom to another. (Contributed by NM, 7-May-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    < = (lt‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑄 < 𝑋)) → 𝑃 < 𝑋)
 
Theorem2atlt 37380* Given an atom less than an element, there is another atom less than the element. (Contributed by NM, 6-May-2012.)
𝐵 = (Base‘𝐾)    &    < = (lt‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞𝐴 (𝑞𝑃𝑞 < 𝑋))
 
TheorematexchcvrN 37381 Atom exchange property. Version of hlatexch2 37337 with covers relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃𝐶(𝑄 𝑅) → 𝑄𝐶(𝑃 𝑅)))
 
TheorematexchltN 37382 Atom exchange property. Version of hlatexch2 37337 with less-than ordering. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.)
< = (lt‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 < (𝑄 𝑅) → 𝑄 < (𝑃 𝑅)))
 
Theoremcvrat3 37383 A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 30659 analog.) (Contributed by NM, 30-Nov-2011.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
 
Theoremcvrat4 37384* A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in [PtakPulmannova] p. 68. Also Lemma 9.2(delta) in [MaedaMaeda] p. 41. (atcvat4i 30660 analog.) (Contributed by NM, 30-Nov-2011.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
 
Theoremcvrat42 37385* Commuted version of cvrat4 37384. (Contributed by NM, 28-Jan-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑟 𝑄))))
 
Theorem2atjm 37386 The meet of a line (expressed with 2 atoms) and a lattice element. (Contributed by NM, 30-Jul-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄) 𝑋) = 𝑃)
 
Theorematbtwn 37387 Property of a 3rd atom 𝑅 on a line 𝑃 𝑄 intersecting element 𝑋 at 𝑃. (Contributed by NM, 30-Jul-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅𝑃 ↔ ¬ 𝑅 𝑋))
 
TheorematbtwnexOLDN 37388* There exists a 3rd atom 𝑟 on a line 𝑃 𝑄 intersecting element 𝑋 at 𝑃, such that 𝑟 is different from 𝑄 and not in 𝑋. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴 (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑟 (𝑃 𝑄)))
 
Theorematbtwnex 37389* Given atoms 𝑃 in 𝑋 and 𝑄 not in 𝑋, there exists an atom 𝑟 not in 𝑋 such that the line 𝑄 𝑟 intersects 𝑋 at 𝑃. (Contributed by NM, 1-Aug-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴 (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 (𝑄 𝑟)))
 
Theorem3noncolr2 37390 Two ways to express 3 non-colinear atoms (rotated right 2 places). (Contributed by NM, 12-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑄𝑅 ∧ ¬ 𝑃 (𝑄 𝑅)))
 
Theorem3noncolr1N 37391 Two ways to express 3 non-colinear atoms (rotated right 1 place). (Contributed by NM, 12-Jul-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑅𝑃 ∧ ¬ 𝑄 (𝑅 𝑃)))
 
Theoremhlatcon3 37392 Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑃 (𝑄 𝑅))
 
Theoremhlatcon2 37393 Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑃 (𝑅 𝑄))
 
Theorem4noncolr3 37394 A way to express 4 non-colinear atoms (rotated right 3 places). (Contributed by NM, 11-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑆)))
 
Theorem4noncolr2 37395 A way to express 4 non-colinear atoms (rotated right 2 places). (Contributed by NM, 11-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅𝑆 ∧ ¬ 𝑃 (𝑅 𝑆) ∧ ¬ 𝑄 ((𝑅 𝑆) 𝑃)))
 
Theorem4noncolr1 37396 A way to express 4 non-colinear atoms (rotated right 1 places). (Contributed by NM, 11-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆𝑃 ∧ ¬ 𝑄 (𝑆 𝑃) ∧ ¬ 𝑅 ((𝑆 𝑃) 𝑄)))
 
Theoremathgt 37397* A Hilbert lattice, whose height is at least 4, has a chain of 4 successively covering atom joins. (Contributed by NM, 3-May-2012.)
= (join‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
 
Theorem3dim0 37398* There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012.)
= (join‘𝐾)    &    = (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
 
Theorem3dimlem1 37399 Lemma for 3dim1 37408. (Contributed by NM, 25-Jul-2012.)
= (join‘𝐾)    &    = (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅) ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃𝑅 ∧ ¬ 𝑆 (𝑃 𝑅) ∧ ¬ 𝑇 ((𝑃 𝑅) 𝑆)))
 
Theorem3dimlem2 37400 Lemma for 3dim1 37408. (Contributed by NM, 25-Jul-2012.)
= (join‘𝐾)    &    = (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑆 (𝑄 𝑅) ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆)) ∧ (𝑃𝑄𝑃 (𝑄 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑆)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >