Home | Metamath
Proof Explorer Theorem List (p. 374 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | hlatl 37301 | A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.) |
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | ||
Theorem | hlol 37302 | A Hilbert lattice is an ortholattice. (Contributed by NM, 20-Oct-2011.) |
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | ||
Theorem | hlop 37303 | A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011.) |
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | ||
Theorem | hllat 37304 | A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011.) |
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | ||
Theorem | hllatd 37305 | Deduction form of hllat 37304. A Hilbert lattice is a lattice. (Contributed by BJ, 14-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ HL) ⇒ ⊢ (𝜑 → 𝐾 ∈ Lat) | ||
Theorem | hlomcmat 37306 | A Hilbert lattice is orthomodular, complete, and atomic. (Contributed by NM, 5-Nov-2012.) |
⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) | ||
Theorem | hlpos 37307 | A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.) |
⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) | ||
Theorem | hlatjcl 37308 | Closure of join operation. Frequently-used special case of latjcl 18072 for atoms. (Contributed by NM, 15-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) ∈ 𝐵) | ||
Theorem | hlatjcom 37309 | Commutatitivity of join operation. Frequently-used special case of latjcom 18080 for atoms. (Contributed by NM, 15-Jun-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) | ||
Theorem | hlatjidm 37310 | Idempotence of join operation. Frequently-used special case of latjcom 18080 for atoms. (Contributed by NM, 15-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴) → (𝑋 ∨ 𝑋) = 𝑋) | ||
Theorem | hlatjass 37311 | Lattice join is associative. Frequently-used special case of latjass 18116 for atoms. (Contributed by NM, 27-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ (𝑄 ∨ 𝑅))) | ||
Theorem | hlatj12 37312 | Swap 1st and 2nd members of lattice join. Frequently-used special case of latj32 18118 for atoms. (Contributed by NM, 4-Jun-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 ∨ (𝑄 ∨ 𝑅)) = (𝑄 ∨ (𝑃 ∨ 𝑅))) | ||
Theorem | hlatj32 37313 | Swap 2nd and 3rd members of lattice join. Frequently-used special case of latj32 18118 for atoms. (Contributed by NM, 21-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑃 ∨ 𝑅) ∨ 𝑄)) | ||
Theorem | hlatjrot 37314 | Rotate lattice join of 3 classes. Frequently-used special case of latjrot 18121 for atoms. (Contributed by NM, 2-Aug-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑅 ∨ 𝑃) ∨ 𝑄)) | ||
Theorem | hlatj4 37315 | Rearrangement of lattice join of 4 classes. Frequently-used special case of latj4 18122 for atoms. (Contributed by NM, 9-Aug-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑅) ∨ (𝑄 ∨ 𝑆))) | ||
Theorem | hlatlej1 37316 | A join's first argument is less than or equal to the join. Special case of latlej1 18081 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) | ||
Theorem | hlatlej2 37317 | A join's second argument is less than or equal to the join. Special case of latlej2 18082 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) | ||
Theorem | glbconN 37318* | De Morgan's law for GLB and LUB. This holds in any complete ortholattice, although we assume HL for convenience. (Contributed by NM, 17-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) = ( ⊥ ‘(𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}))) | ||
Theorem | glbconxN 37319* | De Morgan's law for GLB and LUB. Index-set version of glbconN 37318, where we read 𝑆 as 𝑆(𝑖). (Contributed by NM, 17-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → (𝐺‘{𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆}) = ( ⊥ ‘(𝑈‘{𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = ( ⊥ ‘𝑆)}))) | ||
Theorem | atnlej1 37320 | If an atom is not less than or equal to the join of two others, it is not equal to either. (This also holds for non-atoms, but in this form it is convenient.) (Contributed by NM, 8-Jan-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑃 ≠ 𝑄) | ||
Theorem | atnlej2 37321 | If an atom is not less than or equal to the join of two others, it is not equal to either. (This also holds for non-atoms, but in this form it is convenient.) (Contributed by NM, 8-Jan-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑃 ≠ 𝑅) | ||
Theorem | hlsuprexch 37322* | A Hilbert lattice has the superposition and exchange properties. (Contributed by NM, 13-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ≠ 𝑄 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ (𝑃 ∨ 𝑄))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑄)) → 𝑄 ≤ (𝑧 ∨ 𝑃)))) | ||
Theorem | hlexch1 37323 | A Hilbert lattice has the exchange property. (Contributed by NM, 13-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | ||
Theorem | hlexch2 37324 | A Hilbert lattice has the exchange property. (Contributed by NM, 6-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) → 𝑄 ≤ (𝑃 ∨ 𝑋))) | ||
Theorem | hlexchb1 37325 | A Hilbert lattice has the exchange property. (Contributed by NM, 16-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | ||
Theorem | hlexchb2 37326 | A Hilbert lattice has the exchange property. (Contributed by NM, 22-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) ↔ (𝑃 ∨ 𝑋) = (𝑄 ∨ 𝑋))) | ||
Theorem | hlsupr 37327* | A Hilbert lattice has the superposition property. Theorem 13.2 in [Crawley] p. 107. (Contributed by NM, 30-Jan-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) | ||
Theorem | hlsupr2 37328* | A Hilbert lattice has the superposition property. (Contributed by NM, 25-Nov-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) | ||
Theorem | hlhgt4 37329* | A Hilbert lattice has a height of at least 4. (Contributed by NM, 4-Dec-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) | ||
Theorem | hlhgt2 37330* | A Hilbert lattice has a height of at least 2. (Contributed by NM, 4-Dec-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ 𝐵 ( 0 < 𝑥 ∧ 𝑥 < 1 )) | ||
Theorem | hl0lt1N 37331 | Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011.) (New usage is discouraged.) |
⊢ < = (lt‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → 0 < 1 ) | ||
Theorem | hlexch3 37332 | A Hilbert lattice has the exchange property. (atexch 30644 analog.) (Contributed by NM, 15-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | ||
Theorem | hlexch4N 37333 | A Hilbert lattice has the exchange property. Part of Definition 7.8 of [MaedaMaeda] p. 32. (Contributed by NM, 15-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | ||
Theorem | hlatexchb1 37334 | A version of hlexchb1 37325 for atoms. (Contributed by NM, 15-Nov-2011.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) ↔ (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄))) | ||
Theorem | hlatexchb2 37335 | A version of hlexchb2 37326 for atoms. (Contributed by NM, 7-Feb-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) | ||
Theorem | hlatexch1 37336 | Atom exchange property. (Contributed by NM, 7-Jan-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) | ||
Theorem | hlatexch2 37337 | Atom exchange property. (Contributed by NM, 8-Jan-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) → 𝑄 ≤ (𝑃 ∨ 𝑅))) | ||
Theorem | hlatmstcOLDN 37338* | An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in [Kalmbach] p. 140; also remark in [BeltramettiCassinelli] p. 98. (hatomistici 30625 analog.) (Contributed by NM, 21-Oct-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) = 𝑋) | ||
Theorem | hlatle 37339* | The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 30634 analog.) (Contributed by NM, 4-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌))) | ||
Theorem | hlateq 37340* | The equality of two Hilbert lattice elements is determined by the atoms under them. (chrelat4i 30636 analog.) (Contributed by NM, 24-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 ↔ 𝑝 ≤ 𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | hlrelat1 37341* | An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 30626, with ∧ swapped, analog.) (Contributed by NM, 4-Dec-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) | ||
Theorem | hlrelat5N 37342* | An atomistic lattice with 0 is relatively atomic, using the definition in Remark 2 of [Kalmbach] p. 149. (Contributed by NM, 21-Oct-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝 ∈ 𝐴 (𝑋 < (𝑋 ∨ 𝑝) ∧ 𝑝 ≤ 𝑌)) | ||
Theorem | hlrelat 37343* | A Hilbert lattice is relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 30627 analog.) (Contributed by NM, 4-Feb-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝 ∈ 𝐴 (𝑋 < (𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≤ 𝑌)) | ||
Theorem | hlrelat2 37344* | A consequence of relative atomicity. (chrelat2i 30628 analog.) (Contributed by NM, 5-Feb-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑌 ↔ ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌))) | ||
Theorem | exatleN 37345 | A condition for an atom to be less than or equal to a lattice element. Part of proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≤ 𝑋 ↔ 𝑅 = 𝑃)) | ||
Theorem | hl2at 37346* | A Hilbert lattice has at least 2 atoms. (Contributed by NM, 5-Dec-2011.) |
⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 𝑝 ≠ 𝑞) | ||
Theorem | atex 37347 | At least one atom exists. (Contributed by NM, 15-Jul-2012.) |
⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → 𝐴 ≠ ∅) | ||
Theorem | intnatN 37348 | If the intersection with a non-majorizing element is an atom, the intersecting element is not an atom. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑌 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴)) → ¬ 𝑌 ∈ 𝐴) | ||
Theorem | 2llnne2N 37349 | Condition implying that two intersecting lines are different. (Contributed by NM, 13-Jun-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑅 ∨ 𝑄)) → (𝑅 ∨ 𝑃) ≠ (𝑅 ∨ 𝑄)) | ||
Theorem | 2llnneN 37350 | Condition implying that two intersecting lines are different. (Contributed by NM, 29-May-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∨ 𝑃) ≠ (𝑅 ∨ 𝑄)) | ||
Theorem | cvr1 37351 | A Hilbert lattice has the covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 30618 analog.) (Contributed by NM, 17-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑋 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) | ||
Theorem | cvr2N 37352 | Less-than and covers equivalence in a Hilbert lattice. (chcv2 30619 analog.) (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 < (𝑋 ∨ 𝑃) ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) | ||
Theorem | hlrelat3 37353* | The Hilbert lattice is relatively atomic. Stronger version of hlrelat 37343. (Contributed by NM, 2-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝 ∈ 𝐴 (𝑋𝐶(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≤ 𝑌)) | ||
Theorem | cvrval3 37354* | Binary relation expressing 𝑌 covers 𝑋. (Contributed by NM, 16-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ (𝑋 ∨ 𝑝) = 𝑌))) | ||
Theorem | cvrval4N 37355* | Binary relation expressing 𝑌 covers 𝑋. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∃𝑝 ∈ 𝐴 (𝑋 ∨ 𝑝) = 𝑌))) | ||
Theorem | cvrval5 37356* | Binary relation expressing 𝑋 covers 𝑋 ∧ 𝑌. (Contributed by NM, 7-Dec-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ 𝑌)𝐶𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑌)) = 𝑋))) | ||
Theorem | cvrp 37357 | A Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 30638 analog.) (Contributed by NM, 18-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 0 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) | ||
Theorem | atcvr1 37358 | An atom is covered by its join with a different atom. (Contributed by NM, 7-Feb-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) | ||
Theorem | atcvr2 37359 | An atom is covered by its join with a different atom. (Contributed by NM, 7-Feb-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑄 ∨ 𝑃))) | ||
Theorem | cvrexchlem 37360 | Lemma for cvrexch 37361. (cvexchlem 30631 analog.) (Contributed by NM, 18-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ 𝑌)𝐶𝑌 → 𝑋𝐶(𝑋 ∨ 𝑌))) | ||
Theorem | cvrexch 37361 | A Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (cvexchi 30632 analog.) (Contributed by NM, 18-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ 𝑌)𝐶𝑌 ↔ 𝑋𝐶(𝑋 ∨ 𝑌))) | ||
Theorem | cvratlem 37362 | Lemma for cvrat 37363. (atcvatlem 30648 analog.) (Contributed by NM, 22-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋 → 𝑋 ∈ 𝐴)) | ||
Theorem | cvrat 37363 | A nonzero Hilbert lattice element less than the join of two atoms is an atom. (atcvati 30649 analog.) (Contributed by NM, 22-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄)) → 𝑋 ∈ 𝐴)) | ||
Theorem | ltltncvr 37364 | A chained strong ordering is not a covers relation. (Contributed by NM, 18-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → ¬ 𝑋𝐶𝑍)) | ||
Theorem | ltcvrntr 37365 | Non-transitive condition for the covers relation. (Contributed by NM, 18-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍)) | ||
Theorem | cvrntr 37366 | The covers relation is not transitive. (cvntr 30555 analog.) (Contributed by NM, 18-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋𝐶𝑌 ∧ 𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍)) | ||
Theorem | atcvr0eq 37367 | The covers relation is not transitive. (atcv0eq 30642 analog.) (Contributed by NM, 29-Nov-2011.) |
⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) | ||
Theorem | lnnat 37368 | A line (the join of two distinct atoms) is not an atom. (Contributed by NM, 14-Jun-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ ¬ (𝑃 ∨ 𝑄) ∈ 𝐴)) | ||
Theorem | atcvrj0 37369 | Two atoms covering the zero subspace are equal. (atcv1 30643 analog.) (Contributed by NM, 29-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → (𝑋 = 0 ↔ 𝑃 = 𝑄)) | ||
Theorem | cvrat2 37370 | A Hilbert lattice element covered by the join of two distinct atoms is an atom. (atcvat2i 30650 analog.) (Contributed by NM, 30-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶(𝑃 ∨ 𝑄))) → 𝑋 ∈ 𝐴) | ||
Theorem | atcvrneN 37371 | Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → 𝑄 ≠ 𝑅) | ||
Theorem | atcvrj1 37372 | Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃𝐶(𝑄 ∨ 𝑅)) | ||
Theorem | atcvrj2b 37373 | Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑄 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) ↔ 𝑃𝐶(𝑄 ∨ 𝑅))) | ||
Theorem | atcvrj2 37374 | Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃𝐶(𝑄 ∨ 𝑅)) | ||
Theorem | atleneN 37375 | Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑄 ≠ 𝑅) | ||
Theorem | atltcvr 37376 | An equivalence of less-than ordering and covers relation. (Contributed by NM, 7-Feb-2012.) |
⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 < (𝑄 ∨ 𝑅) ↔ 𝑃𝐶(𝑄 ∨ 𝑅))) | ||
Theorem | atle 37377* | Any nonzero element has an atom under it. (Contributed by NM, 28-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃𝑝 ∈ 𝐴 𝑝 ≤ 𝑋) | ||
Theorem | atlt 37378 | Two atoms are unequal iff their join is greater than one of them. (Contributed by NM, 6-May-2012.) |
⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 < (𝑃 ∨ 𝑄) ↔ 𝑃 ≠ 𝑄)) | ||
Theorem | atlelt 37379 | Transfer less-than relation from one atom to another. (Contributed by NM, 7-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝑃 < 𝑋) | ||
Theorem | 2atlt 37380* | Given an atom less than an element, there is another atom less than the element. (Contributed by NM, 6-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 < 𝑋)) | ||
Theorem | atexchcvrN 37381 | Atom exchange property. Version of hlatexch2 37337 with covers relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃𝐶(𝑄 ∨ 𝑅) → 𝑄𝐶(𝑃 ∨ 𝑅))) | ||
Theorem | atexchltN 37382 | Atom exchange property. Version of hlatexch2 37337 with less-than ordering. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 < (𝑄 ∨ 𝑅) → 𝑄 < (𝑃 ∨ 𝑅))) | ||
Theorem | cvrat3 37383 | A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 30659 analog.) (Contributed by NM, 30-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) | ||
Theorem | cvrat4 37384* | A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in [PtakPulmannova] p. 68. Also Lemma 9.2(delta) in [MaedaMaeda] p. 41. (atcvat4i 30660 analog.) (Contributed by NM, 30-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) | ||
Theorem | cvrat42 37385* | Commuted version of cvrat4 37384. (Contributed by NM, 28-Jan-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) | ||
Theorem | 2atjm 37386 | The meet of a line (expressed with 2 atoms) and a lattice element. (Contributed by NM, 30-Jul-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ((𝑃 ∨ 𝑄) ∧ 𝑋) = 𝑃) | ||
Theorem | atbtwn 37387 | Property of a 3rd atom 𝑅 on a line 𝑃 ∨ 𝑄 intersecting element 𝑋 at 𝑃. (Contributed by NM, 30-Jul-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≠ 𝑃 ↔ ¬ 𝑅 ≤ 𝑋)) | ||
Theorem | atbtwnexOLDN 37388* | There exists a 3rd atom 𝑟 on a line 𝑃 ∨ 𝑄 intersecting element 𝑋 at 𝑃, such that 𝑟 is different from 𝑄 and not in 𝑋. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) | ||
Theorem | atbtwnex 37389* | Given atoms 𝑃 in 𝑋 and 𝑄 not in 𝑋, there exists an atom 𝑟 not in 𝑋 such that the line 𝑄 ∨ 𝑟 intersects 𝑋 at 𝑃. (Contributed by NM, 1-Aug-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))) | ||
Theorem | 3noncolr2 37390 | Two ways to express 3 non-colinear atoms (rotated right 2 places). (Contributed by NM, 12-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑄 ≠ 𝑅 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅))) | ||
Theorem | 3noncolr1N 37391 | Two ways to express 3 non-colinear atoms (rotated right 1 place). (Contributed by NM, 12-Jul-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≠ 𝑃 ∧ ¬ 𝑄 ≤ (𝑅 ∨ 𝑃))) | ||
Theorem | hlatcon3 37392 | Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) | ||
Theorem | hlatcon2 37393 | Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑃 ≤ (𝑅 ∨ 𝑄)) | ||
Theorem | 4noncolr3 37394 | A way to express 4 non-colinear atoms (rotated right 3 places). (Contributed by NM, 11-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) | ||
Theorem | 4noncolr2 37395 | A way to express 4 non-colinear atoms (rotated right 2 places). (Contributed by NM, 11-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ≠ 𝑆 ∧ ¬ 𝑃 ≤ (𝑅 ∨ 𝑆) ∧ ¬ 𝑄 ≤ ((𝑅 ∨ 𝑆) ∨ 𝑃))) | ||
Theorem | 4noncolr1 37396 | A way to express 4 non-colinear atoms (rotated right 1 places). (Contributed by NM, 11-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ≠ 𝑃 ∧ ¬ 𝑄 ≤ (𝑆 ∨ 𝑃) ∧ ¬ 𝑅 ≤ ((𝑆 ∨ 𝑃) ∨ 𝑄))) | ||
Theorem | athgt 37397* | A Hilbert lattice, whose height is at least 4, has a chain of 4 successively covering atom joins. (Contributed by NM, 3-May-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝𝐶(𝑝 ∨ 𝑞) ∧ ∃𝑟 ∈ 𝐴 ((𝑝 ∨ 𝑞)𝐶((𝑝 ∨ 𝑞) ∨ 𝑟) ∧ ∃𝑠 ∈ 𝐴 ((𝑝 ∨ 𝑞) ∨ 𝑟)𝐶(((𝑝 ∨ 𝑞) ∨ 𝑟) ∨ 𝑠)))) | ||
Theorem | 3dim0 37398* | There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ ¬ 𝑠 ≤ ((𝑝 ∨ 𝑞) ∨ 𝑟))) | ||
Theorem | 3dimlem1 37399 | Lemma for 3dim1 37408. (Contributed by NM, 25-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆))) | ||
Theorem | 3dimlem2 37400 | Lemma for 3dim1 37408. (Contributed by NM, 25-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |