Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tsbi3 | Structured version Visualization version GIF version |
Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
Ref | Expression |
---|---|
tsbi3 | ⊢ (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpr 219 | . . . . 5 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
2 | con34b 315 | . . . . . 6 ⊢ ((𝜓 → 𝜑) ↔ (¬ 𝜑 → ¬ 𝜓)) | |
3 | pm2.54 848 | . . . . . 6 ⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜑 ∨ ¬ 𝜓)) | |
4 | 2, 3 | sylbi 216 | . . . . 5 ⊢ ((𝜓 → 𝜑) → (𝜑 ∨ ¬ 𝜓)) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ∨ ¬ 𝜓)) |
6 | 5 | con3i 154 | . . 3 ⊢ (¬ (𝜑 ∨ ¬ 𝜓) → ¬ (𝜑 ↔ 𝜓)) |
7 | 6 | orri 858 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓)) |
8 | 7 | a1i 11 | 1 ⊢ (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: tsbi4 36221 tsxo3 36224 mpobi123f 36247 mptbi12f 36251 ac6s6 36257 |
Copyright terms: Public domain | W3C validator |