| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tsbi3 | Structured version Visualization version GIF version | ||
| Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
| Ref | Expression |
|---|---|
| tsbi3 | ⊢ (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpr 220 | . . . . 5 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 2 | con34b 316 | . . . . . 6 ⊢ ((𝜓 → 𝜑) ↔ (¬ 𝜑 → ¬ 𝜓)) | |
| 3 | pm2.54 853 | . . . . . 6 ⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜑 ∨ ¬ 𝜓)) | |
| 4 | 2, 3 | sylbi 217 | . . . . 5 ⊢ ((𝜓 → 𝜑) → (𝜑 ∨ ¬ 𝜓)) |
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ∨ ¬ 𝜓)) |
| 6 | 5 | con3i 154 | . . 3 ⊢ (¬ (𝜑 ∨ ¬ 𝜓) → ¬ (𝜑 ↔ 𝜓)) |
| 7 | 6 | orri 863 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓)) |
| 8 | 7 | a1i 11 | 1 ⊢ (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 |
| This theorem is referenced by: tsbi4 38143 tsxo3 38146 mpobi123f 38169 mptbi12f 38173 ac6s6 38179 |
| Copyright terms: Public domain | W3C validator |