| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| 4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1i 913 orbi12i 914 orass 921 or4 926 or42 927 orordir 929 dn1 1057 dfifp6 1068 excxor 1517 nf3 1787 19.44v 1999 19.44 2240 sspsstri 4052 unass 4119 undi 4232 undif3 4247 2nreu 4391 undif4 4414 ssunpr 4783 sspr 4784 sstp 4785 pr1eqbg 4806 iinun2 5019 iinuni 5044 qfto 6067 somin1 6079 ordtri2 6341 on0eqel 6431 frxp 8056 poxp2 8073 soseq 8089 frrlem12 8227 supgtoreq 9355 wemapsolem 9436 fin1a2lem12 10302 psslinpr 10922 suplem2pr 10944 fimaxre 12066 elnn0 12383 elxnn0 12456 elnn1uz2 12823 elxr 13015 xrinfmss 13209 elfzp1 13474 hashf1lem2 14363 dvdslelem 16220 pythagtrip 16746 tosso 18323 orngsqr 20781 maducoeval2 22555 madugsum 22558 ist0-3 23260 limcdif 25804 ellimc2 25805 limcmpt 25811 limcres 25814 plydivex 26232 taylfval 26293 precsexlem9 28153 zs12zodd 28392 legtrid 28569 legso 28577 lmicom 28766 numedglnl 29122 nb3grprlem2 29359 clwwlkneq0 30009 atomli 32362 atoml2i 32363 or3di 32438 disjnf 32550 disjex 32572 disjexc 32573 ind1a 32840 cycpmrn 33112 esumcvg 34099 voliune 34242 volfiniune 34243 bnj964 34955 satfvsucsuc 35409 satfrnmapom 35414 satf0op 35421 fmlaomn0 35434 dfso2 35799 lineunray 36189 bj-dfbi4 36615 bj-axadj 37083 wl-ifpimpr 37508 wl-df4-3mintru2 37529 poimirlem18 37686 poimirlem23 37691 poimirlem27 37695 poimirlem31 37699 itg2addnclem2 37720 tsxo1 38185 tsxo2 38186 tsxo3 38187 tsxo4 38188 tsna1 38192 tsna2 38193 tsna3 38194 ts3an1 38198 ts3an2 38199 ts3an3 38200 ts3or1 38201 ts3or2 38202 ts3or3 38203 dfeldisj5 38767 aks4d1p7 42124 reelznn0nn 42502 dflim5 43370 ifpim123g 43541 ifpor123g 43549 rp-fakeoranass 43555 ontric3g 43563 frege133d 43806 or3or 44064 undif3VD 44922 wallispilem3 46113 iccpartgt 47466 nnsum4primeseven 47839 nnsum4primesevenALTV 47840 clnbupgrel 47873 usgrexmpl2trifr 48076 pg4cyclnex 48166 lindslinindsimp2 48503 |
| Copyright terms: Public domain | W3C validator |