![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi2i | Structured version Visualization version GIF version |
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 |
This theorem is referenced by: orbi1i 913 orbi12i 914 orass 921 or4 926 or42 927 orordir 929 dn1 1057 dfifp6 1068 excxor 1512 nf3 1782 nfnbiOLD 1852 19.44v 1989 19.44 2234 sspsstri 4114 unass 4181 undi 4290 undif3 4305 2nreu 4449 undif4 4472 ssunpr 4838 sspr 4839 sstp 4840 pr1eqbg 4861 iinun2 5077 iinuni 5102 qfto 6143 somin1 6155 ordtri2 6420 on0eqel 6509 frxp 8149 poxp2 8166 soseq 8182 frrlem12 8320 wfrlem14OLD 8360 wfrlem15OLD 8361 supgtoreq 9507 wemapsolem 9587 fin1a2lem12 10448 psslinpr 11068 suplem2pr 11090 fimaxre 12209 elnn0 12525 elxnn0 12598 elnn1uz2 12964 elxr 13155 xrinfmss 13348 elfzp1 13610 hashf1lem2 14491 dvdslelem 16342 pythagtrip 16867 tosso 18476 maducoeval2 22661 madugsum 22664 ist0-3 23368 limcdif 25925 ellimc2 25926 limcmpt 25932 limcres 25935 plydivex 26353 taylfval 26414 precsexlem9 28253 legtrid 28613 legso 28621 lmicom 28810 numedglnl 29175 nb3grprlem2 29412 clwwlkneq0 30057 atomli 32410 atoml2i 32411 or3di 32487 disjnf 32589 disjex 32611 disjexc 32612 cycpmrn 33145 orngsqr 33313 ind1a 33999 esumcvg 34066 voliune 34209 volfiniune 34210 bnj964 34935 satfvsucsuc 35349 satfrnmapom 35354 satf0op 35361 fmlaomn0 35374 dfso2 35734 lineunray 36128 bj-dfbi4 36555 bj-axadj 37023 wl-ifpimpr 37448 wl-df4-3mintru2 37469 poimirlem18 37624 poimirlem23 37629 poimirlem27 37633 poimirlem31 37637 itg2addnclem2 37658 tsxo1 38123 tsxo2 38124 tsxo3 38125 tsxo4 38126 tsna1 38130 tsna2 38131 tsna3 38132 ts3an1 38136 ts3an2 38137 ts3an3 38138 ts3or1 38139 ts3or2 38140 ts3or3 38141 dfeldisj5 38702 aks4d1p7 42064 reelznn0nn 42455 dflim5 43318 ifpim123g 43489 ifpor123g 43497 rp-fakeoranass 43503 ontric3g 43511 frege133d 43754 or3or 44012 undif3VD 44879 wallispilem3 46022 iccpartgt 47351 nnsum4primeseven 47724 nnsum4primesevenALTV 47725 clnbupgrel 47758 usgrexmpl2trifr 47931 lindslinindsimp2 48308 |
Copyright terms: Public domain | W3C validator |