![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi2i | Structured version Visualization version GIF version |
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | orim2i 907 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
4 | 1 | biimpri 227 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | orim2i 907 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
6 | 3, 5 | impbii 208 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: orbi1i 910 orbi12i 911 orass 918 or4 923 or42 924 orordir 926 dn1 1054 dfifp6 1065 excxor 1513 nf3 1786 nfnbiOLD 1856 19.44v 1994 19.44 2228 sspsstri 4103 unass 4167 undi 4275 undif3 4291 2nreu 4442 undif4 4467 ssunpr 4836 sspr 4837 sstp 4838 pr1eqbg 4858 iinun2 5077 iinuni 5102 qfto 6123 somin1 6135 ordtri2 6400 on0eqel 6489 frxp 8116 poxp2 8133 soseq 8149 frrlem12 8286 wfrlem14OLD 8326 wfrlem15OLD 8327 supgtoreq 9469 wemapsolem 9549 fin1a2lem12 10410 psslinpr 11030 suplem2pr 11052 fimaxre 12164 elnn0 12480 elxnn0 12552 elnn1uz2 12915 elxr 13102 xrinfmss 13295 elfzp1 13557 hashf1lem2 14423 dvdslelem 16258 pythagtrip 16773 tosso 18378 maducoeval2 22364 madugsum 22367 ist0-3 23071 limcdif 25627 ellimc2 25628 limcmpt 25634 limcres 25637 plydivex 26044 taylfval 26105 precsexlem9 27898 legtrid 28107 legso 28115 lmicom 28304 numedglnl 28669 nb3grprlem2 28903 clwwlkneq0 29547 atomli 31900 atoml2i 31901 or3di 31966 disjnf 32066 disjex 32088 disjexc 32089 cycpmrn 32570 orngsqr 32690 ind1a 33313 esumcvg 33380 voliune 33523 volfiniune 33524 bnj964 34250 satfvsucsuc 34652 satfrnmapom 34657 satf0op 34664 fmlaomn0 34677 dfso2 35027 lineunray 35421 bj-dfbi4 35755 bj-axadj 36227 wl-ifpimpr 36652 wl-df4-3mintru2 36673 poimirlem18 36811 poimirlem23 36816 poimirlem27 36820 poimirlem31 36824 itg2addnclem2 36845 tsxo1 37310 tsxo2 37311 tsxo3 37312 tsxo4 37313 tsna1 37317 tsna2 37318 tsna3 37319 ts3an1 37323 ts3an2 37324 ts3an3 37325 ts3or1 37326 ts3or2 37327 ts3or3 37328 dfeldisj5 37896 aks4d1p7 41256 reelznn0nn 41626 dflim5 42383 ifpim123g 42555 ifpor123g 42563 rp-fakeoranass 42569 ontric3g 42577 frege133d 42820 or3or 43078 undif3VD 43947 wallispilem3 45083 iccpartgt 46395 nnsum4primeseven 46768 nnsum4primesevenALTV 46769 lindslinindsimp2 47233 |
Copyright terms: Public domain | W3C validator |