| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| 4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1i 913 orbi12i 914 orass 921 or4 926 or42 927 orordir 929 dn1 1057 dfifp6 1068 excxor 1516 nf3 1786 19.44v 1998 19.44 2238 sspsstri 4071 unass 4138 undi 4251 undif3 4266 2nreu 4410 undif4 4433 ssunpr 4801 sspr 4802 sstp 4803 pr1eqbg 4824 iinun2 5040 iinuni 5065 qfto 6097 somin1 6109 ordtri2 6370 on0eqel 6461 frxp 8108 poxp2 8125 soseq 8141 frrlem12 8279 supgtoreq 9429 wemapsolem 9510 fin1a2lem12 10371 psslinpr 10991 suplem2pr 11013 fimaxre 12134 elnn0 12451 elxnn0 12524 elnn1uz2 12891 elxr 13083 xrinfmss 13277 elfzp1 13542 hashf1lem2 14428 dvdslelem 16286 pythagtrip 16812 tosso 18385 maducoeval2 22534 madugsum 22537 ist0-3 23239 limcdif 25784 ellimc2 25785 limcmpt 25791 limcres 25794 plydivex 26212 taylfval 26273 precsexlem9 28124 legtrid 28525 legso 28533 lmicom 28722 numedglnl 29078 nb3grprlem2 29315 clwwlkneq0 29965 atomli 32318 atoml2i 32319 or3di 32395 disjnf 32506 disjex 32528 disjexc 32529 ind1a 32789 cycpmrn 33107 orngsqr 33289 esumcvg 34083 voliune 34226 volfiniune 34227 bnj964 34940 satfvsucsuc 35359 satfrnmapom 35364 satf0op 35371 fmlaomn0 35384 dfso2 35749 lineunray 36142 bj-dfbi4 36568 bj-axadj 37036 wl-ifpimpr 37461 wl-df4-3mintru2 37482 poimirlem18 37639 poimirlem23 37644 poimirlem27 37648 poimirlem31 37652 itg2addnclem2 37673 tsxo1 38138 tsxo2 38139 tsxo3 38140 tsxo4 38141 tsna1 38145 tsna2 38146 tsna3 38147 ts3an1 38151 ts3an2 38152 ts3an3 38153 ts3or1 38154 ts3or2 38155 ts3or3 38156 dfeldisj5 38720 aks4d1p7 42078 reelznn0nn 42456 dflim5 43325 ifpim123g 43496 ifpor123g 43504 rp-fakeoranass 43510 ontric3g 43518 frege133d 43761 or3or 44019 undif3VD 44878 wallispilem3 46072 iccpartgt 47432 nnsum4primeseven 47805 nnsum4primesevenALTV 47806 clnbupgrel 47839 usgrexmpl2trifr 48032 pg4cyclnex 48121 lindslinindsimp2 48456 |
| Copyright terms: Public domain | W3C validator |