| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| 4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1i 913 orbi12i 914 orass 921 or4 926 or42 927 orordir 929 dn1 1057 dfifp6 1068 excxor 1516 nf3 1786 19.44v 1998 19.44 2238 sspsstri 4064 unass 4131 undi 4244 undif3 4259 2nreu 4403 undif4 4426 ssunpr 4794 sspr 4795 sstp 4796 pr1eqbg 4817 iinun2 5032 iinuni 5057 qfto 6082 somin1 6094 ordtri2 6355 on0eqel 6446 frxp 8082 poxp2 8099 soseq 8115 frrlem12 8253 supgtoreq 9398 wemapsolem 9479 fin1a2lem12 10340 psslinpr 10960 suplem2pr 10982 fimaxre 12103 elnn0 12420 elxnn0 12493 elnn1uz2 12860 elxr 13052 xrinfmss 13246 elfzp1 13511 hashf1lem2 14397 dvdslelem 16255 pythagtrip 16781 tosso 18354 maducoeval2 22503 madugsum 22506 ist0-3 23208 limcdif 25753 ellimc2 25754 limcmpt 25760 limcres 25763 plydivex 26181 taylfval 26242 precsexlem9 28093 legtrid 28494 legso 28502 lmicom 28691 numedglnl 29047 nb3grprlem2 29284 clwwlkneq0 29931 atomli 32284 atoml2i 32285 or3di 32361 disjnf 32472 disjex 32494 disjexc 32495 ind1a 32755 cycpmrn 33073 orngsqr 33255 esumcvg 34049 voliune 34192 volfiniune 34193 bnj964 34906 satfvsucsuc 35325 satfrnmapom 35330 satf0op 35337 fmlaomn0 35350 dfso2 35715 lineunray 36108 bj-dfbi4 36534 bj-axadj 37002 wl-ifpimpr 37427 wl-df4-3mintru2 37448 poimirlem18 37605 poimirlem23 37610 poimirlem27 37614 poimirlem31 37618 itg2addnclem2 37639 tsxo1 38104 tsxo2 38105 tsxo3 38106 tsxo4 38107 tsna1 38111 tsna2 38112 tsna3 38113 ts3an1 38117 ts3an2 38118 ts3an3 38119 ts3or1 38120 ts3or2 38121 ts3or3 38122 dfeldisj5 38686 aks4d1p7 42044 reelznn0nn 42422 dflim5 43291 ifpim123g 43462 ifpor123g 43470 rp-fakeoranass 43476 ontric3g 43484 frege133d 43727 or3or 43985 undif3VD 44844 wallispilem3 46038 iccpartgt 47401 nnsum4primeseven 47774 nnsum4primesevenALTV 47775 clnbupgrel 47808 usgrexmpl2trifr 48001 pg4cyclnex 48090 lindslinindsimp2 48425 |
| Copyright terms: Public domain | W3C validator |