| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| 4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1i 913 orbi12i 914 orass 921 or4 926 or42 927 orordir 929 dn1 1057 dfifp6 1068 excxor 1516 nf3 1786 19.44v 1998 19.44 2238 sspsstri 4064 unass 4131 undi 4244 undif3 4259 2nreu 4403 undif4 4426 ssunpr 4794 sspr 4795 sstp 4796 pr1eqbg 4817 iinun2 5032 iinuni 5057 qfto 6082 somin1 6094 ordtri2 6355 on0eqel 6446 frxp 8082 poxp2 8099 soseq 8115 frrlem12 8253 supgtoreq 9398 wemapsolem 9479 fin1a2lem12 10340 psslinpr 10960 suplem2pr 10982 fimaxre 12103 elnn0 12420 elxnn0 12493 elnn1uz2 12860 elxr 13052 xrinfmss 13246 elfzp1 13511 hashf1lem2 14397 dvdslelem 16255 pythagtrip 16781 tosso 18358 orngsqr 20786 maducoeval2 22560 madugsum 22563 ist0-3 23265 limcdif 25810 ellimc2 25811 limcmpt 25817 limcres 25820 plydivex 26238 taylfval 26299 precsexlem9 28157 zs12zodd 28394 legtrid 28571 legso 28579 lmicom 28768 numedglnl 29124 nb3grprlem2 29361 clwwlkneq0 30008 atomli 32361 atoml2i 32362 or3di 32438 disjnf 32549 disjex 32571 disjexc 32572 ind1a 32832 cycpmrn 33115 esumcvg 34069 voliune 34212 volfiniune 34213 bnj964 34926 satfvsucsuc 35345 satfrnmapom 35350 satf0op 35357 fmlaomn0 35370 dfso2 35735 lineunray 36128 bj-dfbi4 36554 bj-axadj 37022 wl-ifpimpr 37447 wl-df4-3mintru2 37468 poimirlem18 37625 poimirlem23 37630 poimirlem27 37634 poimirlem31 37638 itg2addnclem2 37659 tsxo1 38124 tsxo2 38125 tsxo3 38126 tsxo4 38127 tsna1 38131 tsna2 38132 tsna3 38133 ts3an1 38137 ts3an2 38138 ts3an3 38139 ts3or1 38140 ts3or2 38141 ts3or3 38142 dfeldisj5 38706 aks4d1p7 42064 reelznn0nn 42442 dflim5 43311 ifpim123g 43482 ifpor123g 43490 rp-fakeoranass 43496 ontric3g 43504 frege133d 43747 or3or 44005 undif3VD 44864 wallispilem3 46058 iccpartgt 47421 nnsum4primeseven 47794 nnsum4primesevenALTV 47795 clnbupgrel 47828 usgrexmpl2trifr 48021 pg4cyclnex 48110 lindslinindsimp2 48445 |
| Copyright terms: Public domain | W3C validator |