![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi2i | Structured version Visualization version GIF version |
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | orim2i 909 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | orim2i 909 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: orbi1i 912 orbi12i 913 orass 920 or4 925 or42 926 orordir 928 dn1 1058 dfifp6 1069 excxor 1513 nf3 1784 nfnbiOLD 1854 19.44v 1992 19.44 2238 sspsstri 4128 unass 4195 undi 4304 undif3 4319 2nreu 4467 undif4 4490 ssunpr 4859 sspr 4860 sstp 4861 pr1eqbg 4881 iinun2 5096 iinuni 5121 qfto 6153 somin1 6165 ordtri2 6430 on0eqel 6519 frxp 8167 poxp2 8184 soseq 8200 frrlem12 8338 wfrlem14OLD 8378 wfrlem15OLD 8379 supgtoreq 9539 wemapsolem 9619 fin1a2lem12 10480 psslinpr 11100 suplem2pr 11122 fimaxre 12239 elnn0 12555 elxnn0 12627 elnn1uz2 12990 elxr 13179 xrinfmss 13372 elfzp1 13634 hashf1lem2 14505 dvdslelem 16357 pythagtrip 16881 tosso 18489 maducoeval2 22667 madugsum 22670 ist0-3 23374 limcdif 25931 ellimc2 25932 limcmpt 25938 limcres 25941 plydivex 26357 taylfval 26418 precsexlem9 28257 legtrid 28617 legso 28625 lmicom 28814 numedglnl 29179 nb3grprlem2 29416 clwwlkneq0 30061 atomli 32414 atoml2i 32415 or3di 32488 disjnf 32592 disjex 32614 disjexc 32615 cycpmrn 33136 orngsqr 33299 ind1a 33983 esumcvg 34050 voliune 34193 volfiniune 34194 bnj964 34919 satfvsucsuc 35333 satfrnmapom 35338 satf0op 35345 fmlaomn0 35358 dfso2 35717 lineunray 36111 bj-dfbi4 36539 bj-axadj 37007 wl-ifpimpr 37432 wl-df4-3mintru2 37453 poimirlem18 37598 poimirlem23 37603 poimirlem27 37607 poimirlem31 37611 itg2addnclem2 37632 tsxo1 38097 tsxo2 38098 tsxo3 38099 tsxo4 38100 tsna1 38104 tsna2 38105 tsna3 38106 ts3an1 38110 ts3an2 38111 ts3an3 38112 ts3or1 38113 ts3or2 38114 ts3or3 38115 dfeldisj5 38677 aks4d1p7 42040 reelznn0nn 42425 dflim5 43291 ifpim123g 43462 ifpor123g 43470 rp-fakeoranass 43476 ontric3g 43484 frege133d 43727 or3or 43985 undif3VD 44853 wallispilem3 45988 iccpartgt 47301 nnsum4primeseven 47674 nnsum4primesevenALTV 47675 clnbupgrel 47707 usgrexmpl2trifr 47852 lindslinindsimp2 48192 |
Copyright terms: Public domain | W3C validator |