| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| 4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1i 913 orbi12i 914 orass 921 or4 926 or42 927 orordir 929 dn1 1057 dfifp6 1068 excxor 1516 nf3 1786 19.44v 1998 19.44 2238 sspsstri 4056 unass 4123 undi 4236 undif3 4251 2nreu 4395 undif4 4418 ssunpr 4785 sspr 4786 sstp 4787 pr1eqbg 4808 iinun2 5022 iinuni 5047 qfto 6070 somin1 6082 ordtri2 6342 on0eqel 6432 frxp 8059 poxp2 8076 soseq 8092 frrlem12 8230 supgtoreq 9361 wemapsolem 9442 fin1a2lem12 10305 psslinpr 10925 suplem2pr 10947 fimaxre 12069 elnn0 12386 elxnn0 12459 elnn1uz2 12826 elxr 13018 xrinfmss 13212 elfzp1 13477 hashf1lem2 14363 dvdslelem 16220 pythagtrip 16746 tosso 18323 orngsqr 20751 maducoeval2 22525 madugsum 22528 ist0-3 23230 limcdif 25775 ellimc2 25776 limcmpt 25782 limcres 25785 plydivex 26203 taylfval 26264 precsexlem9 28122 zs12zodd 28359 legtrid 28536 legso 28544 lmicom 28733 numedglnl 29089 nb3grprlem2 29326 clwwlkneq0 29973 atomli 32326 atoml2i 32327 or3di 32403 disjnf 32514 disjex 32536 disjexc 32537 ind1a 32802 cycpmrn 33085 esumcvg 34053 voliune 34196 volfiniune 34197 bnj964 34910 satfvsucsuc 35338 satfrnmapom 35343 satf0op 35350 fmlaomn0 35363 dfso2 35728 lineunray 36121 bj-dfbi4 36547 bj-axadj 37015 wl-ifpimpr 37440 wl-df4-3mintru2 37461 poimirlem18 37618 poimirlem23 37623 poimirlem27 37627 poimirlem31 37631 itg2addnclem2 37652 tsxo1 38117 tsxo2 38118 tsxo3 38119 tsxo4 38120 tsna1 38124 tsna2 38125 tsna3 38126 ts3an1 38130 ts3an2 38131 ts3an3 38132 ts3or1 38133 ts3or2 38134 ts3or3 38135 dfeldisj5 38699 aks4d1p7 42056 reelznn0nn 42434 dflim5 43302 ifpim123g 43473 ifpor123g 43481 rp-fakeoranass 43487 ontric3g 43495 frege133d 43738 or3or 43996 undif3VD 44855 wallispilem3 46048 iccpartgt 47411 nnsum4primeseven 47784 nnsum4primesevenALTV 47785 clnbupgrel 47818 usgrexmpl2trifr 48021 pg4cyclnex 48111 lindslinindsimp2 48448 |
| Copyright terms: Public domain | W3C validator |