Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orbi2i | Structured version Visualization version GIF version |
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | orim2i 908 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
4 | 1 | biimpri 227 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | orim2i 908 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
6 | 3, 5 | impbii 208 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: orbi1i 911 orbi12i 912 orass 919 or4 924 or42 925 orordir 927 dn1 1055 dfifp6 1066 excxor 1512 nf3 1789 nfnbiOLD 1858 19.44v 1996 19.44 2230 sspsstri 4037 unass 4100 undi 4208 undif3 4224 2nreu 4375 undif4 4400 ssunpr 4765 sspr 4766 sstp 4767 pr1eqbg 4787 iinun2 5002 iinuni 5027 qfto 6026 somin1 6038 ordtri2 6301 on0eqel 6384 frxp 7967 frrlem12 8113 wfrlem14OLD 8153 wfrlem15OLD 8154 supgtoreq 9229 wemapsolem 9309 fin1a2lem12 10167 psslinpr 10787 suplem2pr 10809 fimaxre 11919 elnn0 12235 elxnn0 12307 elnn1uz2 12665 elxr 12852 xrinfmss 13044 elfzp1 13306 hashf1lem2 14170 dvdslelem 16018 pythagtrip 16535 tosso 18137 maducoeval2 21789 madugsum 21792 ist0-3 22496 limcdif 25040 ellimc2 25041 limcmpt 25047 limcres 25050 plydivex 25457 taylfval 25518 legtrid 26952 legso 26960 lmicom 27149 numedglnl 27514 nb3grprlem2 27748 clwwlkneq0 28393 atomli 30744 atoml2i 30745 or3di 30810 disjnf 30909 disjex 30931 disjexc 30932 cycpmrn 31410 orngsqr 31503 ind1a 31987 esumcvg 32054 voliune 32197 volfiniune 32198 bnj964 32923 satfvsucsuc 33327 satfrnmapom 33332 satf0op 33339 fmlaomn0 33352 dfso2 33722 poxp2 33790 poxp3 33796 soseq 33803 lineunray 34449 bj-dfbi4 34754 wl-ifpimpr 35637 wl-df4-3mintru2 35658 poimirlem18 35795 poimirlem23 35800 poimirlem27 35804 poimirlem31 35808 itg2addnclem2 35829 tsxo1 36295 tsxo2 36296 tsxo3 36297 tsxo4 36298 tsna1 36302 tsna2 36303 tsna3 36304 ts3an1 36308 ts3an2 36309 ts3an3 36310 ts3or1 36311 ts3or2 36312 ts3or3 36313 dfeldisj5 36832 aks4d1p7 40091 ifpim123g 41107 ifpor123g 41115 rp-fakeoranass 41121 ontric3g 41129 frege133d 41373 or3or 41631 undif3VD 42502 wallispilem3 43608 iccpartgt 44879 nnsum4primeseven 45252 nnsum4primesevenALTV 45253 lindslinindsimp2 45804 |
Copyright terms: Public domain | W3C validator |