Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orbi2i | Structured version Visualization version GIF version |
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | orim2i 907 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
4 | 1 | biimpri 227 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | orim2i 907 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
6 | 3, 5 | impbii 208 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: orbi1i 910 orbi12i 911 orass 918 or4 923 or42 924 orordir 926 dn1 1054 dfifp6 1065 excxor 1509 nf3 1790 nfnbiOLD 1859 19.44v 1997 19.44 2233 sspsstri 4033 unass 4096 undi 4205 undif3 4221 2nreu 4372 undif4 4397 ssunpr 4762 sspr 4763 sstp 4764 pr1eqbg 4784 iinun2 4998 iinuni 5023 qfto 6015 somin1 6027 ordtri2 6286 on0eqel 6369 frxp 7938 frrlem12 8084 wfrlem14OLD 8124 wfrlem15OLD 8125 supgtoreq 9159 wemapsolem 9239 fin1a2lem12 10098 psslinpr 10718 suplem2pr 10740 fimaxre 11849 elnn0 12165 elxnn0 12237 elnn1uz2 12594 elxr 12781 xrinfmss 12973 elfzp1 13235 hashf1lem2 14098 dvdslelem 15946 pythagtrip 16463 tosso 18052 maducoeval2 21697 madugsum 21700 ist0-3 22404 limcdif 24945 ellimc2 24946 limcmpt 24952 limcres 24955 plydivex 25362 taylfval 25423 legtrid 26856 legso 26864 lmicom 27053 numedglnl 27417 nb3grprlem2 27651 clwwlkneq0 28294 atomli 30645 atoml2i 30646 or3di 30711 disjnf 30810 disjex 30832 disjexc 30833 cycpmrn 31312 orngsqr 31405 ind1a 31887 esumcvg 31954 voliune 32097 volfiniune 32098 bnj964 32823 satfvsucsuc 33227 satfrnmapom 33232 satf0op 33239 fmlaomn0 33252 dfso2 33628 poxp2 33717 poxp3 33723 soseq 33730 lineunray 34376 bj-dfbi4 34681 wl-ifpimpr 35564 wl-df4-3mintru2 35585 poimirlem18 35722 poimirlem23 35727 poimirlem27 35731 poimirlem31 35735 itg2addnclem2 35756 tsxo1 36222 tsxo2 36223 tsxo3 36224 tsxo4 36225 tsna1 36229 tsna2 36230 tsna3 36231 ts3an1 36235 ts3an2 36236 ts3an3 36237 ts3or1 36238 ts3or2 36239 ts3or3 36240 dfeldisj5 36759 aks4d1p7 40019 ifpim123g 41005 ifpor123g 41013 rp-fakeoranass 41019 ontric3g 41027 frege133d 41262 or3or 41520 undif3VD 42391 wallispilem3 43498 iccpartgt 44767 nnsum4primeseven 45140 nnsum4primesevenALTV 45141 lindslinindsimp2 45692 |
Copyright terms: Public domain | W3C validator |