| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| 4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1i 913 orbi12i 914 orass 921 or4 926 or42 927 orordir 929 dn1 1057 dfifp6 1068 excxor 1516 nf3 1786 19.44v 1992 19.44 2237 sspsstri 4080 unass 4147 undi 4260 undif3 4275 2nreu 4419 undif4 4442 ssunpr 4810 sspr 4811 sstp 4812 pr1eqbg 4833 iinun2 5049 iinuni 5074 qfto 6110 somin1 6122 ordtri2 6387 on0eqel 6477 frxp 8123 poxp2 8140 soseq 8156 frrlem12 8294 wfrlem14OLD 8334 wfrlem15OLD 8335 supgtoreq 9481 wemapsolem 9562 fin1a2lem12 10423 psslinpr 11043 suplem2pr 11065 fimaxre 12184 elnn0 12501 elxnn0 12574 elnn1uz2 12939 elxr 13130 xrinfmss 13324 elfzp1 13589 hashf1lem2 14472 dvdslelem 16326 pythagtrip 16852 tosso 18427 maducoeval2 22576 madugsum 22579 ist0-3 23281 limcdif 25827 ellimc2 25828 limcmpt 25834 limcres 25837 plydivex 26255 taylfval 26316 precsexlem9 28156 legtrid 28516 legso 28524 lmicom 28713 numedglnl 29069 nb3grprlem2 29306 clwwlkneq0 29956 atomli 32309 atoml2i 32310 or3di 32386 disjnf 32497 disjex 32519 disjexc 32520 ind1a 32782 cycpmrn 33100 orngsqr 33272 esumcvg 34063 voliune 34206 volfiniune 34207 bnj964 34920 satfvsucsuc 35333 satfrnmapom 35338 satf0op 35345 fmlaomn0 35358 dfso2 35718 lineunray 36111 bj-dfbi4 36537 bj-axadj 37005 wl-ifpimpr 37430 wl-df4-3mintru2 37451 poimirlem18 37608 poimirlem23 37613 poimirlem27 37617 poimirlem31 37621 itg2addnclem2 37642 tsxo1 38107 tsxo2 38108 tsxo3 38109 tsxo4 38110 tsna1 38114 tsna2 38115 tsna3 38116 ts3an1 38120 ts3an2 38121 ts3an3 38122 ts3or1 38123 ts3or2 38124 ts3or3 38125 dfeldisj5 38685 aks4d1p7 42042 reelznn0nn 42439 dflim5 43300 ifpim123g 43471 ifpor123g 43479 rp-fakeoranass 43485 ontric3g 43493 frege133d 43736 or3or 43994 undif3VD 44854 wallispilem3 46044 iccpartgt 47389 nnsum4primeseven 47762 nnsum4primesevenALTV 47763 clnbupgrel 47796 usgrexmpl2trifr 47989 lindslinindsimp2 48387 |
| Copyright terms: Public domain | W3C validator |