| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| 4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | orim2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1i 913 orbi12i 914 orass 921 or4 926 or42 927 orordir 929 dn1 1057 dfifp6 1068 excxor 1516 nf3 1786 19.44v 1998 19.44 2238 sspsstri 4068 unass 4135 undi 4248 undif3 4263 2nreu 4407 undif4 4430 ssunpr 4798 sspr 4799 sstp 4800 pr1eqbg 4821 iinun2 5037 iinuni 5062 qfto 6094 somin1 6106 ordtri2 6367 on0eqel 6458 frxp 8105 poxp2 8122 soseq 8138 frrlem12 8276 supgtoreq 9422 wemapsolem 9503 fin1a2lem12 10364 psslinpr 10984 suplem2pr 11006 fimaxre 12127 elnn0 12444 elxnn0 12517 elnn1uz2 12884 elxr 13076 xrinfmss 13270 elfzp1 13535 hashf1lem2 14421 dvdslelem 16279 pythagtrip 16805 tosso 18378 maducoeval2 22527 madugsum 22530 ist0-3 23232 limcdif 25777 ellimc2 25778 limcmpt 25784 limcres 25787 plydivex 26205 taylfval 26266 precsexlem9 28117 legtrid 28518 legso 28526 lmicom 28715 numedglnl 29071 nb3grprlem2 29308 clwwlkneq0 29958 atomli 32311 atoml2i 32312 or3di 32388 disjnf 32499 disjex 32521 disjexc 32522 ind1a 32782 cycpmrn 33100 orngsqr 33282 esumcvg 34076 voliune 34219 volfiniune 34220 bnj964 34933 satfvsucsuc 35352 satfrnmapom 35357 satf0op 35364 fmlaomn0 35377 dfso2 35742 lineunray 36135 bj-dfbi4 36561 bj-axadj 37029 wl-ifpimpr 37454 wl-df4-3mintru2 37475 poimirlem18 37632 poimirlem23 37637 poimirlem27 37641 poimirlem31 37645 itg2addnclem2 37666 tsxo1 38131 tsxo2 38132 tsxo3 38133 tsxo4 38134 tsna1 38138 tsna2 38139 tsna3 38140 ts3an1 38144 ts3an2 38145 ts3an3 38146 ts3or1 38147 ts3or2 38148 ts3or3 38149 dfeldisj5 38713 aks4d1p7 42071 reelznn0nn 42449 dflim5 43318 ifpim123g 43489 ifpor123g 43497 rp-fakeoranass 43503 ontric3g 43511 frege133d 43754 or3or 44012 undif3VD 44871 wallispilem3 46065 iccpartgt 47428 nnsum4primeseven 47801 nnsum4primesevenALTV 47802 clnbupgrel 47835 usgrexmpl2trifr 48028 pg4cyclnex 48117 lindslinindsimp2 48452 |
| Copyright terms: Public domain | W3C validator |