|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uun0.1 | Structured version Visualization version GIF version | ||
| Description: Convention notation form of un0.1 44804. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| uun0.1.1 | ⊢ (⊤ → 𝜑) | 
| uun0.1.2 | ⊢ (𝜓 → 𝜒) | 
| uun0.1.3 | ⊢ ((⊤ ∧ 𝜓) → 𝜃) | 
| Ref | Expression | 
|---|---|
| uun0.1 | ⊢ (𝜓 → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tru 1543 | . 2 ⊢ ⊤ | |
| 2 | uun0.1.1 | . . . . . 6 ⊢ (⊤ → 𝜑) | |
| 3 | uun0.1.2 | . . . . . 6 ⊢ (𝜓 → 𝜒) | |
| 4 | 2, 3 | pm3.2i 470 | . . . . 5 ⊢ ((⊤ → 𝜑) ∧ (𝜓 → 𝜒)) | 
| 5 | uun0.1.3 | . . . . 5 ⊢ ((⊤ ∧ 𝜓) → 𝜃) | |
| 6 | 4, 5 | pm3.2i 470 | . . . 4 ⊢ (((⊤ → 𝜑) ∧ (𝜓 → 𝜒)) ∧ ((⊤ ∧ 𝜓) → 𝜃)) | 
| 7 | 6 | simpri 485 | . . 3 ⊢ ((⊤ ∧ 𝜓) → 𝜃) | 
| 8 | 7 | ex 412 | . 2 ⊢ (⊤ → (𝜓 → 𝜃)) | 
| 9 | 1, 8 | ax-mp 5 | 1 ⊢ (𝜓 → 𝜃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1540 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 | 
| This theorem is referenced by: un0.1 44804 sspwimp 44943 | 
| Copyright terms: Public domain | W3C validator |