Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uun0.1 | Structured version Visualization version GIF version |
Description: Convention notation form of un0.1 42288. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
uun0.1.1 | ⊢ (⊤ → 𝜑) |
uun0.1.2 | ⊢ (𝜓 → 𝜒) |
uun0.1.3 | ⊢ ((⊤ ∧ 𝜓) → 𝜃) |
Ref | Expression |
---|---|
uun0.1 | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . 2 ⊢ ⊤ | |
2 | uun0.1.1 | . . . . . 6 ⊢ (⊤ → 𝜑) | |
3 | uun0.1.2 | . . . . . 6 ⊢ (𝜓 → 𝜒) | |
4 | 2, 3 | pm3.2i 470 | . . . . 5 ⊢ ((⊤ → 𝜑) ∧ (𝜓 → 𝜒)) |
5 | uun0.1.3 | . . . . 5 ⊢ ((⊤ ∧ 𝜓) → 𝜃) | |
6 | 4, 5 | pm3.2i 470 | . . . 4 ⊢ (((⊤ → 𝜑) ∧ (𝜓 → 𝜒)) ∧ ((⊤ ∧ 𝜓) → 𝜃)) |
7 | 6 | simpri 485 | . . 3 ⊢ ((⊤ ∧ 𝜓) → 𝜃) |
8 | 7 | ex 412 | . 2 ⊢ (⊤ → (𝜓 → 𝜃)) |
9 | 1, 8 | ax-mp 5 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 |
This theorem is referenced by: un0.1 42288 sspwimp 42427 |
Copyright terms: Public domain | W3C validator |