Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  un0.1 Structured version   Visualization version   GIF version

Theorem un0.1 42288
Description: is the constant true, a tautology (see df-tru 1542). Kleene's "empty conjunction" is logically equivalent to . In a virtual deduction we shall interpret to be the empty wff or the empty collection of virtual hypotheses. in a virtual deduction translated into conventional notation we shall interpret to be Kleene's empty conjunction. If 𝜃 is true given the empty collection of virtual hypotheses and another collection of virtual hypotheses, then it is true given only the other collection of virtual hypotheses. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
un0.1.1 (      ▶   𝜑   )
un0.1.2 (   𝜓   ▶   𝜒   )
un0.1.3 (   (      ,   𝜓   )   ▶   𝜃   )
Assertion
Ref Expression
un0.1 (   𝜓   ▶   𝜃   )

Proof of Theorem un0.1
StepHypRef Expression
1 un0.1.1 . . . 4 (      ▶   𝜑   )
21in1 42080 . . 3 (⊤ → 𝜑)
3 un0.1.2 . . . 4 (   𝜓   ▶   𝜒   )
43in1 42080 . . 3 (𝜓𝜒)
5 un0.1.3 . . . 4 (   (      ,   𝜓   )   ▶   𝜃   )
65dfvd2ani 42092 . . 3 ((⊤ ∧ 𝜓) → 𝜃)
72, 4, 6uun0.1 42287 . 2 (𝜓𝜃)
87dfvd1ir 42082 1 (   𝜓   ▶   𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wtru 1540  (   wvd1 42078  (   wvhc2 42089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-vd1 42079  df-vhc2 42090
This theorem is referenced by:  sspwimpVD  42428
  Copyright terms: Public domain W3C validator