Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  un0.1 Structured version   Visualization version   GIF version

Theorem un0.1 44212
Description: is the constant true, a tautology (see df-tru 1537). Kleene's "empty conjunction" is logically equivalent to . In a virtual deduction we shall interpret to be the empty wff or the empty collection of virtual hypotheses. in a virtual deduction translated into conventional notation we shall interpret to be Kleene's empty conjunction. If 𝜃 is true given the empty collection of virtual hypotheses and another collection of virtual hypotheses, then it is true given only the other collection of virtual hypotheses. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
un0.1.1 (      ▶   𝜑   )
un0.1.2 (   𝜓   ▶   𝜒   )
un0.1.3 (   (      ,   𝜓   )   ▶   𝜃   )
Assertion
Ref Expression
un0.1 (   𝜓   ▶   𝜃   )

Proof of Theorem un0.1
StepHypRef Expression
1 un0.1.1 . . . 4 (      ▶   𝜑   )
21in1 44004 . . 3 (⊤ → 𝜑)
3 un0.1.2 . . . 4 (   𝜓   ▶   𝜒   )
43in1 44004 . . 3 (𝜓𝜒)
5 un0.1.3 . . . 4 (   (      ,   𝜓   )   ▶   𝜃   )
65dfvd2ani 44016 . . 3 ((⊤ ∧ 𝜓) → 𝜃)
72, 4, 6uun0.1 44211 . 2 (𝜓𝜃)
87dfvd1ir 44006 1 (   𝜓   ▶   𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wtru 1535  (   wvd1 44002  (   wvhc2 44013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-vd1 44003  df-vhc2 44014
This theorem is referenced by:  sspwimpVD  44352
  Copyright terms: Public domain W3C validator