Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  un0.1 Structured version   Visualization version   GIF version

Theorem un0.1 44811
Description: is the constant true, a tautology (see df-tru 1544). Kleene's "empty conjunction" is logically equivalent to . In a virtual deduction we shall interpret to be the empty wff or the empty collection of virtual hypotheses. in a virtual deduction translated into conventional notation we shall interpret to be Kleene's empty conjunction. If 𝜃 is true given the empty collection of virtual hypotheses and another collection of virtual hypotheses, then it is true given only the other collection of virtual hypotheses. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
un0.1.1 (      ▶   𝜑   )
un0.1.2 (   𝜓   ▶   𝜒   )
un0.1.3 (   (      ,   𝜓   )   ▶   𝜃   )
Assertion
Ref Expression
un0.1 (   𝜓   ▶   𝜃   )

Proof of Theorem un0.1
StepHypRef Expression
1 un0.1.1 . . . 4 (      ▶   𝜑   )
21in1 44604 . . 3 (⊤ → 𝜑)
3 un0.1.2 . . . 4 (   𝜓   ▶   𝜒   )
43in1 44604 . . 3 (𝜓𝜒)
5 un0.1.3 . . . 4 (   (      ,   𝜓   )   ▶   𝜃   )
65dfvd2ani 44616 . . 3 ((⊤ ∧ 𝜓) → 𝜃)
72, 4, 6uun0.1 44810 . 2 (𝜓𝜃)
87dfvd1ir 44606 1 (   𝜓   ▶   𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wtru 1542  (   wvd1 44602  (   wvhc2 44613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-vd1 44603  df-vhc2 44614
This theorem is referenced by:  sspwimpVD  44951
  Copyright terms: Public domain W3C validator