Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwimp | Structured version Visualization version GIF version |
Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. For the biconditional, see sspwb 5359. The proof sspwimp 42427, using conventional notation, was translated from virtual deduction form, sspwimpVD 42428, using a translation program. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspwimp | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑥 ∈ V) |
3 | id 22 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
4 | id 22 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐴) | |
5 | elpwi 4539 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) |
7 | sstr 3925 | . . . . . . . 8 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝑥 ⊆ 𝐵) | |
8 | 7 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴) → 𝑥 ⊆ 𝐵) |
9 | 3, 6, 8 | syl2an 595 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ⊆ 𝐵) |
10 | 2, 9 | elpwgded 42073 | . . . . . 6 ⊢ ((⊤ ∧ (𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴)) → 𝑥 ∈ 𝒫 𝐵) |
11 | 2, 9, 10 | uun0.1 42287 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝒫 𝐵) |
12 | 11 | ex 412 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) |
13 | 12 | alrimiv 1931 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) |
14 | dfss2 3903 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) | |
15 | 14 | biimpri 227 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
16 | 13, 15 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
17 | 16 | iin1 42081 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ⊤wtru 1540 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |