Proof of Theorem uun2221p2
Step | Hyp | Ref
| Expression |
1 | | uun2221p2.1 |
. . 3
⊢ (((𝜓 ∧ 𝜑) ∧ 𝜑 ∧ 𝜑) → 𝜒) |
2 | | 3anrev 1099 |
. . . 4
⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) ↔ ((𝜓 ∧ 𝜑) ∧ 𝜑 ∧ 𝜑)) |
3 | 2 | imbi1i 349 |
. . 3
⊢ (((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) → 𝜒) ↔ (((𝜓 ∧ 𝜑) ∧ 𝜑 ∧ 𝜑) → 𝜒)) |
4 | 1, 3 | mpbir 230 |
. 2
⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) → 𝜒) |
5 | | 3anass 1093 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) ↔ (𝜑 ∧ (𝜑 ∧ (𝜓 ∧ 𝜑)))) |
6 | | anabs5 659 |
. . . . . 6
⊢ ((𝜑 ∧ (𝜑 ∧ (𝜓 ∧ 𝜑))) ↔ (𝜑 ∧ (𝜓 ∧ 𝜑))) |
7 | 5, 6 | bitri 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜑))) |
8 | | ancom 460 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
9 | 8 | anbi2i 622 |
. . . . 5
⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜑))) |
10 | 7, 9 | bitr4i 277 |
. . . 4
⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) ↔ (𝜑 ∧ (𝜑 ∧ 𝜓))) |
11 | | anabs5 659 |
. . . . 5
⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
12 | 11, 8 | bitri 274 |
. . . 4
⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜓 ∧ 𝜑)) |
13 | 10, 12 | bitri 274 |
. . 3
⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) ↔ (𝜓 ∧ 𝜑)) |
14 | 13 | imbi1i 349 |
. 2
⊢ (((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
15 | 4, 14 | mpbi 229 |
1
⊢ ((𝜓 ∧ 𝜑) → 𝜒) |