MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anrev Structured version   Visualization version   GIF version

Theorem 3anrev 1100
Description: Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3anrev ((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))

Proof of Theorem 3anrev
StepHypRef Expression
1 3ancoma 1097 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
2 3anrot 1099 . 2 ((𝜒𝜓𝜑) ↔ (𝜓𝜑𝜒))
31, 2bitr4i 277 1 ((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  an33rean  1482  an33reanOLD  1483  nnmcan  8465  odupos  18046  wwlks2onsym  28323  frgr3v  28639  bnj345  32693  bnj1098  32763  pocnv  33730  btwnswapid2  34320  colinbtwnle  34420  uunT11p2  42418  uunT12p5  42424  uun2221p2  42435
  Copyright terms: Public domain W3C validator