![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anrev | Structured version Visualization version GIF version |
Description: Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3anrev | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 1120 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
2 | 3anrot 1123 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
3 | 1, 2 | bitr4i 270 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ w3a 1108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-3an 1110 |
This theorem is referenced by: 3com13OLD 1449 an33rean 1608 nnmcan 7952 odupos 17447 wwlks2onsym 27240 frgr3v 27616 bnj345 31292 bnj1098 31363 pocnv 32159 btwnswapid2 32630 colinbtwnle 32730 uunT11p2 39782 uunT12p5 39788 uun2221p2 39799 |
Copyright terms: Public domain | W3C validator |