Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anrev Structured version   Visualization version   GIF version

Theorem 3anrev 1098
 Description: Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3anrev ((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))

Proof of Theorem 3anrev
StepHypRef Expression
1 3ancoma 1095 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
2 3anrot 1097 . 2 ((𝜒𝜓𝜑) ↔ (𝜓𝜑𝜒))
31, 2bitr4i 281 1 ((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ w3a 1084 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086 This theorem is referenced by:  an33rean  1480  an33reanOLD  1481  nnmcan  8276  odupos  17825  wwlks2onsym  27857  frgr3v  28173  bnj345  32225  bnj1098  32296  pocnv  33259  btwnswapid2  33904  colinbtwnle  34004  uunT11p2  41922  uunT12p5  41928  uun2221p2  41939
 Copyright terms: Public domain W3C validator