MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anrev Structured version   Visualization version   GIF version

Theorem 3anrev 1095
Description: Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3anrev ((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))

Proof of Theorem 3anrev
StepHypRef Expression
1 3ancoma 1092 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
2 3anrot 1094 . 2 ((𝜒𝜓𝜑) ↔ (𝜓𝜑𝜒))
31, 2bitr4i 279 1 ((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 207  w3a 1081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-an 397  df-3an 1083
This theorem is referenced by:  an33rean  1476  nnmcan  8250  odupos  17735  wwlks2onsym  27651  frgr3v  27968  bnj345  31870  bnj1098  31941  pocnv  32883  btwnswapid2  33363  colinbtwnle  33463  uunT11p2  40997  uunT12p5  41003  uun2221p2  41014
  Copyright terms: Public domain W3C validator