MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anrev Structured version   Visualization version   GIF version

Theorem 3anrev 1127
Description: Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3anrev ((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))

Proof of Theorem 3anrev
StepHypRef Expression
1 3ancoma 1120 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
2 3anrot 1123 . 2 ((𝜒𝜓𝜑) ↔ (𝜓𝜑𝜒))
31, 2bitr4i 270 1 ((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 198  w3a 1108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 386  df-3an 1110
This theorem is referenced by:  3com13OLD  1449  an33rean  1608  nnmcan  7952  odupos  17447  wwlks2onsym  27240  frgr3v  27616  bnj345  31292  bnj1098  31363  pocnv  32159  btwnswapid2  32630  colinbtwnle  32730  uunT11p2  39782  uunT12p5  39788  uun2221p2  39799
  Copyright terms: Public domain W3C validator