MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anrev Structured version   Visualization version   GIF version

Theorem 3anrev 1100
Description: Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3anrev ((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))

Proof of Theorem 3anrev
StepHypRef Expression
1 3ancoma 1097 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
2 3anrot 1099 . 2 ((𝜒𝜓𝜑) ↔ (𝜓𝜑𝜒))
31, 2bitr4i 278 1 ((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  an33rean  1485  nnmcan  8549  odupos  18232  wwlks2onsym  29938  frgr3v  30255  bnj345  34726  bnj1098  34795  pocnv  35807  btwnswapid2  36062  colinbtwnle  36162  uunT11p2  44900  uunT12p5  44906  uun2221p2  44917  grtriproplem  48049  grtrif1o  48052
  Copyright terms: Public domain W3C validator