Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uunT12p4 | Structured version Visualization version GIF version |
Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
uunT12p4.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ ⊤) → 𝜒) |
Ref | Expression |
---|---|
uunT12p4 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anrot 1099 | . . . 4 ⊢ ((⊤ ∧ 𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜓 ∧ ⊤)) | |
2 | 3anass 1094 | . . . 4 ⊢ ((⊤ ∧ 𝜑 ∧ 𝜓) ↔ (⊤ ∧ (𝜑 ∧ 𝜓))) | |
3 | 1, 2 | bitr3i 276 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ ⊤) ↔ (⊤ ∧ (𝜑 ∧ 𝜓))) |
4 | truan 1550 | . . 3 ⊢ ((⊤ ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) | |
5 | 3, 4 | bitri 274 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ ⊤) ↔ (𝜑 ∧ 𝜓)) |
6 | uunT12p4.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ ⊤) → 𝜒) | |
7 | 5, 6 | sylbir 234 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ⊤wtru 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |