| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > truan | Structured version Visualization version GIF version | ||
| Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1545 | . . 3 ⊢ ⊤ | |
| 2 | 1 | biantrur 530 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
| 3 | 2 | bicomi 224 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊤wtru 1542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 |
| This theorem is referenced by: truanfal 1575 euelss 4279 tgcgr4 28509 aciunf1 32645 sgn3da 32817 wl-2mintru1 37534 truconj 38151 tradd 38155 ifpdfxor 43590 dfid7 43715 eel0TT 44806 eelT00 44807 eelTTT 44808 eelT11 44809 eelT12 44811 eelTT1 44812 eelT01 44813 eel0T1 44814 eelTT 44873 uunT1p1 44883 uunTT1 44895 uunTT1p1 44896 uunTT1p2 44897 uunT11 44898 uunT11p1 44899 uunT11p2 44900 uunT12 44901 uunT12p1 44902 uunT12p2 44903 uunT12p3 44904 uunT12p4 44905 uunT12p5 44906 |
| Copyright terms: Public domain | W3C validator |