| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > truan | Structured version Visualization version GIF version | ||
| Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . . 3 ⊢ ⊤ | |
| 2 | 1 | biantrur 530 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
| 3 | 2 | bicomi 224 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 |
| This theorem is referenced by: truanfal 1574 euelss 4297 tgcgr4 28464 aciunf1 32593 sgn3da 32765 wl-2mintru1 37473 truconj 38090 tradd 38094 ifpdfxor 43469 dfid7 43594 eel0TT 44686 eelT00 44687 eelTTT 44688 eelT11 44689 eelT12 44691 eelTT1 44692 eelT01 44693 eel0T1 44694 eelTT 44753 uunT1p1 44763 uunTT1 44775 uunTT1p1 44776 uunTT1p2 44777 uunT11 44778 uunT11p1 44779 uunT11p2 44780 uunT12 44781 uunT12p1 44782 uunT12p2 44783 uunT12p3 44784 uunT12p4 44785 uunT12p5 44786 |
| Copyright terms: Public domain | W3C validator |