![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > truan | Structured version Visualization version GIF version |
Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
Ref | Expression |
---|---|
truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1537 | . . 3 ⊢ ⊤ | |
2 | 1 | biantrur 529 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
3 | 2 | bicomi 223 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ⊤wtru 1534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 |
This theorem is referenced by: truanfal 1567 euelss 4322 tgcgr4 28391 aciunf1 32506 sgn3da 34231 wl-2mintru1 37039 truconj 37644 tradd 37648 ifpdfxor 42982 dfid7 43107 eel0TT 44208 eelT00 44209 eelTTT 44210 eelT11 44211 eelT12 44213 eelTT1 44214 eelT01 44215 eel0T1 44216 eelTT 44275 uunT1p1 44285 uunTT1 44297 uunTT1p1 44298 uunTT1p2 44299 uunT11 44300 uunT11p1 44301 uunT11p2 44302 uunT12 44303 uunT12p1 44304 uunT12p2 44305 uunT12p3 44306 uunT12p4 44307 uunT12p5 44308 |
Copyright terms: Public domain | W3C validator |