| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > truan | Structured version Visualization version GIF version | ||
| Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1543 | . . 3 ⊢ ⊤ | |
| 2 | 1 | biantrur 530 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
| 3 | 2 | bicomi 224 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊤wtru 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 |
| This theorem is referenced by: truanfal 1573 euelss 4331 tgcgr4 28540 aciunf1 32674 sgn3da 34545 wl-2mintru1 37492 truconj 38109 tradd 38113 ifpdfxor 43505 dfid7 43630 eel0TT 44729 eelT00 44730 eelTTT 44731 eelT11 44732 eelT12 44734 eelTT1 44735 eelT01 44736 eel0T1 44737 eelTT 44796 uunT1p1 44806 uunTT1 44818 uunTT1p1 44819 uunTT1p2 44820 uunT11 44821 uunT11p1 44822 uunT11p2 44823 uunT12 44824 uunT12p1 44825 uunT12p2 44826 uunT12p3 44827 uunT12p4 44828 uunT12p5 44829 |
| Copyright terms: Public domain | W3C validator |