Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > truan | Structured version Visualization version GIF version |
Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
Ref | Expression |
---|---|
truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . . 3 ⊢ ⊤ | |
2 | 1 | biantrur 530 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
3 | 2 | bicomi 223 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ⊤wtru 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 |
This theorem is referenced by: truanfal 1573 euelss 4252 tgcgr4 26796 aciunf1 30902 sgn3da 32408 wl-2mintru1 35588 truconj 36186 tradd 36190 ifpdfxor 40992 dfid7 41109 eel0TT 42213 eelT00 42214 eelTTT 42215 eelT11 42216 eelT12 42218 eelTT1 42219 eelT01 42220 eel0T1 42221 eelTT 42280 uunT1p1 42290 uunTT1 42302 uunTT1p1 42303 uunTT1p2 42304 uunT11 42305 uunT11p1 42306 uunT11p2 42307 uunT12 42308 uunT12p1 42309 uunT12p2 42310 uunT12p3 42311 uunT12p4 42312 uunT12p5 42313 |
Copyright terms: Public domain | W3C validator |