Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > truan | Structured version Visualization version GIF version |
Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
Ref | Expression |
---|---|
truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1545 | . . 3 ⊢ ⊤ | |
2 | 1 | biantrur 530 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
3 | 2 | bicomi 223 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ⊤wtru 1542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 |
This theorem is referenced by: truanfal 1575 euelss 4260 tgcgr4 26873 aciunf1 30979 sgn3da 32487 wl-2mintru1 35640 truconj 36238 tradd 36242 ifpdfxor 41056 dfid7 41173 eel0TT 42277 eelT00 42278 eelTTT 42279 eelT11 42280 eelT12 42282 eelTT1 42283 eelT01 42284 eel0T1 42285 eelTT 42344 uunT1p1 42354 uunTT1 42366 uunTT1p1 42367 uunTT1p2 42368 uunT11 42369 uunT11p1 42370 uunT11p2 42371 uunT12 42372 uunT12p1 42373 uunT12p2 42374 uunT12p3 42375 uunT12p4 42376 uunT12p5 42377 |
Copyright terms: Public domain | W3C validator |