![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > truan | Structured version Visualization version GIF version |
Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
Ref | Expression |
---|---|
truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1538 | . . 3 ⊢ ⊤ | |
2 | 1 | biantrur 530 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
3 | 2 | bicomi 223 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ⊤wtru 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 |
This theorem is referenced by: truanfal 1568 euelss 4317 tgcgr4 28322 aciunf1 32432 sgn3da 34097 wl-2mintru1 36905 truconj 37509 tradd 37513 ifpdfxor 42840 dfid7 42965 eel0TT 44066 eelT00 44067 eelTTT 44068 eelT11 44069 eelT12 44071 eelTT1 44072 eelT01 44073 eel0T1 44074 eelTT 44133 uunT1p1 44143 uunTT1 44155 uunTT1p1 44156 uunTT1p2 44157 uunT11 44158 uunT11p1 44159 uunT11p2 44160 uunT12 44161 uunT12p1 44162 uunT12p2 44163 uunT12p3 44164 uunT12p4 44165 uunT12p5 44166 |
Copyright terms: Public domain | W3C validator |