![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > truan | Structured version Visualization version GIF version |
Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
Ref | Expression |
---|---|
truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1546 | . . 3 ⊢ ⊤ | |
2 | 1 | biantrur 532 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
3 | 2 | bicomi 223 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ⊤wtru 1543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 |
This theorem is referenced by: truanfal 1576 euelss 4322 tgcgr4 27782 aciunf1 31888 sgn3da 33540 wl-2mintru1 36371 truconj 36969 tradd 36973 ifpdfxor 42238 dfid7 42363 eel0TT 43465 eelT00 43466 eelTTT 43467 eelT11 43468 eelT12 43470 eelTT1 43471 eelT01 43472 eel0T1 43473 eelTT 43532 uunT1p1 43542 uunTT1 43554 uunTT1p1 43555 uunTT1p2 43556 uunT11 43557 uunT11p1 43558 uunT11p2 43559 uunT12 43560 uunT12p1 43561 uunT12p2 43562 uunT12p3 43563 uunT12p4 43564 uunT12p5 43565 |
Copyright terms: Public domain | W3C validator |