| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > truan | Structured version Visualization version GIF version | ||
| Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . . 3 ⊢ ⊤ | |
| 2 | 1 | biantrur 530 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
| 3 | 2 | bicomi 224 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 |
| This theorem is referenced by: truanfal 1574 euelss 4312 tgcgr4 28515 aciunf1 32646 sgn3da 32818 wl-2mintru1 37513 truconj 38130 tradd 38134 ifpdfxor 43478 dfid7 43603 eel0TT 44695 eelT00 44696 eelTTT 44697 eelT11 44698 eelT12 44700 eelTT1 44701 eelT01 44702 eel0T1 44703 eelTT 44762 uunT1p1 44772 uunTT1 44784 uunTT1p1 44785 uunTT1p2 44786 uunT11 44787 uunT11p1 44788 uunT11p2 44789 uunT12 44790 uunT12p1 44791 uunT12p2 44792 uunT12p3 44793 uunT12p4 44794 uunT12p5 44795 |
| Copyright terms: Public domain | W3C validator |