| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > truan | Structured version Visualization version GIF version | ||
| Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . . 3 ⊢ ⊤ | |
| 2 | 1 | biantrur 530 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
| 3 | 2 | bicomi 224 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 |
| This theorem is referenced by: truanfal 1574 euelss 4307 tgcgr4 28456 aciunf1 32587 sgn3da 32759 wl-2mintru1 37454 truconj 38071 tradd 38075 ifpdfxor 43458 dfid7 43583 eel0TT 44676 eelT00 44677 eelTTT 44678 eelT11 44679 eelT12 44681 eelTT1 44682 eelT01 44683 eel0T1 44684 eelTT 44743 uunT1p1 44753 uunTT1 44765 uunTT1p1 44766 uunTT1p2 44767 uunT11 44768 uunT11p1 44769 uunT11p2 44770 uunT12 44771 uunT12p1 44772 uunT12p2 44773 uunT12p3 44774 uunT12p4 44775 uunT12p5 44776 |
| Copyright terms: Public domain | W3C validator |