MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truan Structured version   Visualization version   GIF version

Theorem truan 1550
Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.)
Assertion
Ref Expression
truan ((⊤ ∧ 𝜑) ↔ 𝜑)

Proof of Theorem truan
StepHypRef Expression
1 tru 1543 . . 3
21biantrur 530 . 2 (𝜑 ↔ (⊤ ∧ 𝜑))
32bicomi 224 1 ((⊤ ∧ 𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wtru 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542
This theorem is referenced by:  truanfal  1573  euelss  4331  tgcgr4  28540  aciunf1  32674  sgn3da  34545  wl-2mintru1  37492  truconj  38109  tradd  38113  ifpdfxor  43505  dfid7  43630  eel0TT  44729  eelT00  44730  eelTTT  44731  eelT11  44732  eelT12  44734  eelTT1  44735  eelT01  44736  eel0T1  44737  eelTT  44796  uunT1p1  44806  uunTT1  44818  uunTT1p1  44819  uunTT1p2  44820  uunT11  44821  uunT11p1  44822  uunT11p2  44823  uunT12  44824  uunT12p1  44825  uunT12p2  44826  uunT12p3  44827  uunT12p4  44828  uunT12p5  44829
  Copyright terms: Public domain W3C validator