MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truan Structured version   Visualization version   GIF version

Theorem truan 1545
Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.)
Assertion
Ref Expression
truan ((⊤ ∧ 𝜑) ↔ 𝜑)

Proof of Theorem truan
StepHypRef Expression
1 tru 1538 . . 3
21biantrur 530 . 2 (𝜑 ↔ (⊤ ∧ 𝜑))
32bicomi 223 1 ((⊤ ∧ 𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wtru 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537
This theorem is referenced by:  truanfal  1568  euelss  4317  tgcgr4  28322  aciunf1  32432  sgn3da  34097  wl-2mintru1  36905  truconj  37509  tradd  37513  ifpdfxor  42840  dfid7  42965  eel0TT  44066  eelT00  44067  eelTTT  44068  eelT11  44069  eelT12  44071  eelTT1  44072  eelT01  44073  eel0T1  44074  eelTT  44133  uunT1p1  44143  uunTT1  44155  uunTT1p1  44156  uunTT1p2  44157  uunT11  44158  uunT11p1  44159  uunT11p2  44160  uunT12  44161  uunT12p1  44162  uunT12p2  44163  uunT12p3  44164  uunT12p4  44165  uunT12p5  44166
  Copyright terms: Public domain W3C validator