![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > truan | Structured version Visualization version GIF version |
Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
Ref | Expression |
---|---|
truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1541 | . . 3 ⊢ ⊤ | |
2 | 1 | biantrur 530 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
3 | 2 | bicomi 224 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ⊤wtru 1538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 |
This theorem is referenced by: truanfal 1571 euelss 4338 tgcgr4 28554 aciunf1 32680 sgn3da 34523 wl-2mintru1 37473 truconj 38088 tradd 38092 ifpdfxor 43477 dfid7 43602 eel0TT 44702 eelT00 44703 eelTTT 44704 eelT11 44705 eelT12 44707 eelTT1 44708 eelT01 44709 eel0T1 44710 eelTT 44769 uunT1p1 44779 uunTT1 44791 uunTT1p1 44792 uunTT1p2 44793 uunT11 44794 uunT11p1 44795 uunT11p2 44796 uunT12 44797 uunT12p1 44798 uunT12p2 44799 uunT12p3 44800 uunT12p4 44801 uunT12p5 44802 |
Copyright terms: Public domain | W3C validator |