| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > truan | Structured version Visualization version GIF version | ||
| Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . . 3 ⊢ ⊤ | |
| 2 | 1 | biantrur 530 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
| 3 | 2 | bicomi 224 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 |
| This theorem is referenced by: truanfal 1574 euelss 4283 tgcgr4 28476 aciunf1 32607 sgn3da 32780 wl-2mintru1 37474 truconj 38091 tradd 38095 ifpdfxor 43470 dfid7 43595 eel0TT 44687 eelT00 44688 eelTTT 44689 eelT11 44690 eelT12 44692 eelTT1 44693 eelT01 44694 eel0T1 44695 eelTT 44754 uunT1p1 44764 uunTT1 44776 uunTT1p1 44777 uunTT1p2 44778 uunT11 44779 uunT11p1 44780 uunT11p2 44781 uunT12 44782 uunT12p1 44783 uunT12p2 44784 uunT12p3 44785 uunT12p4 44786 uunT12p5 44787 |
| Copyright terms: Public domain | W3C validator |