Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > truan | Structured version Visualization version GIF version |
Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
Ref | Expression |
---|---|
truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . . 3 ⊢ ⊤ | |
2 | 1 | biantrur 531 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
3 | 2 | bicomi 223 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ⊤wtru 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 |
This theorem is referenced by: truanfal 1573 euelss 4255 tgcgr4 26892 aciunf1 31000 sgn3da 32508 wl-2mintru1 35661 truconj 36259 tradd 36263 ifpdfxor 41094 dfid7 41220 eel0TT 42324 eelT00 42325 eelTTT 42326 eelT11 42327 eelT12 42329 eelTT1 42330 eelT01 42331 eel0T1 42332 eelTT 42391 uunT1p1 42401 uunTT1 42413 uunTT1p1 42414 uunTT1p2 42415 uunT11 42416 uunT11p1 42417 uunT11p2 42418 uunT12 42419 uunT12p1 42420 uunT12p2 42421 uunT12p3 42422 uunT12p4 42423 uunT12p5 42424 |
Copyright terms: Public domain | W3C validator |