| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 1097 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
| 2 | 3ancomb 1098 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrev 1100 wefrc 5648 ordelord 6374 f13dfv 7266 fr3nr 7764 omword 8580 nnmcan 8644 modmulconst 16305 ncoprmlnprm 16745 issubmndb 18781 pmtr3ncomlem1 19452 srgrmhm 20180 isphld 21612 ordtbaslem 23124 xmetpsmet 24285 comet 24450 cphassr 25162 srabn 25310 lgsdi 27295 divsclw 28137 colopp 28694 colinearalglem2 28832 umgr2edg1 29136 nb3grpr 29307 nb3grpr2 29308 nb3gr2nb 29309 cplgr3v 29360 frgr3v 30202 dipassr 30773 bnj170 34675 bnj290 34687 bnj545 34872 bnj571 34883 bnj594 34889 brapply 35902 brrestrict 35913 dfrdg4 35915 cgrid2 35967 cgr3permute3 36011 cgr3permute2 36013 cgr3permute4 36014 cgr3permute5 36015 colinearperm1 36026 colinearperm3 36027 colinearperm2 36028 colinearperm4 36029 colinearperm5 36030 colinearxfr 36039 endofsegid 36049 colinbtwnle 36082 broutsideof2 36086 dmncan2 38047 isltrn2N 40085 oeord2com 43282 uunTT1p2 44767 uunT11p1 44769 uunT12p2 44773 uunT12p4 44775 3anidm12p2 44779 uun2221p1 44786 en3lplem2VD 44816 grtriproplem 47899 grtrif1o 47902 lincvalpr 48342 alimp-no-surprise 49593 |
| Copyright terms: Public domain | W3C validator |