Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version |
Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
Ref | Expression |
---|---|
3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 1097 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
2 | 3ancomb 1098 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3anrev 1100 wefrc 5583 ordelord 6288 f13dfv 7146 fr3nr 7622 omword 8401 nnmcan 8465 modmulconst 15997 ncoprmlnprm 16432 issubmndb 18444 pmtr3ncomlem1 19081 srgrmhm 19772 isphld 20859 ordtbaslem 22339 xmetpsmet 23501 comet 23669 cphassr 24376 srabn 24524 lgsdi 26482 colopp 27130 colinearalglem2 27275 umgr2edg1 27578 nb3grpr 27749 nb3grpr2 27750 nb3gr2nb 27751 cplgr3v 27802 frgr3v 28639 dipassr 29208 bnj170 32677 bnj290 32689 bnj545 32875 bnj571 32886 bnj594 32892 brapply 34240 brrestrict 34251 dfrdg4 34253 cgrid2 34305 cgr3permute3 34349 cgr3permute2 34351 cgr3permute4 34352 cgr3permute5 34353 colinearperm1 34364 colinearperm3 34365 colinearperm2 34366 colinearperm4 34367 colinearperm5 34368 colinearxfr 34377 endofsegid 34387 colinbtwnle 34420 broutsideof2 34424 dmncan2 36235 isltrn2N 38134 uunTT1p2 42415 uunT11p1 42417 uunT12p2 42421 uunT12p4 42423 3anidm12p2 42427 uun2221p1 42434 en3lplem2VD 42464 lincvalpr 45759 alimp-no-surprise 46485 |
Copyright terms: Public domain | W3C validator |