![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version |
Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
Ref | Expression |
---|---|
3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 1096 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
2 | 3ancomb 1097 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: 3anrev 1099 wefrc 5671 ordelord 6387 f13dfv 7276 fr3nr 7763 omword 8574 nnmcan 8638 modmulconst 16237 ncoprmlnprm 16670 issubmndb 18724 pmtr3ncomlem1 19384 srgrmhm 20118 isphld 21428 ordtbaslem 22914 xmetpsmet 24076 comet 24244 cphassr 24962 srabn 25110 lgsdi 27071 divsclw 27879 colopp 28285 colinearalglem2 28430 umgr2edg1 28733 nb3grpr 28904 nb3grpr2 28905 nb3gr2nb 28906 cplgr3v 28957 frgr3v 29793 dipassr 30364 bnj170 34005 bnj290 34017 bnj545 34202 bnj571 34213 bnj594 34219 brapply 35212 brrestrict 35223 dfrdg4 35225 cgrid2 35277 cgr3permute3 35321 cgr3permute2 35323 cgr3permute4 35324 cgr3permute5 35325 colinearperm1 35336 colinearperm3 35337 colinearperm2 35338 colinearperm4 35339 colinearperm5 35340 colinearxfr 35349 endofsegid 35359 colinbtwnle 35392 broutsideof2 35396 dmncan2 37250 isltrn2N 39296 oeord2com 42365 uunTT1p2 43860 uunT11p1 43862 uunT12p2 43866 uunT12p4 43868 3anidm12p2 43872 uun2221p1 43879 en3lplem2VD 43909 lincvalpr 47188 alimp-no-surprise 47917 |
Copyright terms: Public domain | W3C validator |