Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version |
Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
Ref | Expression |
---|---|
3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 1096 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
2 | 3ancomb 1097 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3anrev 1099 wefrc 5574 ordelord 6273 f13dfv 7127 fr3nr 7600 omword 8363 nnmcan 8427 modmulconst 15925 ncoprmlnprm 16360 issubmndb 18359 pmtr3ncomlem1 18996 srgrmhm 19687 isphld 20771 ordtbaslem 22247 xmetpsmet 23409 comet 23575 cphassr 24281 srabn 24429 lgsdi 26387 colopp 27034 colinearalglem2 27178 umgr2edg1 27481 nb3grpr 27652 nb3grpr2 27653 nb3gr2nb 27654 cplgr3v 27705 frgr3v 28540 dipassr 29109 bnj170 32577 bnj290 32589 bnj545 32775 bnj571 32786 bnj594 32792 brapply 34167 brrestrict 34178 dfrdg4 34180 cgrid2 34232 cgr3permute3 34276 cgr3permute2 34278 cgr3permute4 34279 cgr3permute5 34280 colinearperm1 34291 colinearperm3 34292 colinearperm2 34293 colinearperm4 34294 colinearperm5 34295 colinearxfr 34304 endofsegid 34314 colinbtwnle 34347 broutsideof2 34351 dmncan2 36162 isltrn2N 38061 uunTT1p2 42304 uunT11p1 42306 uunT12p2 42310 uunT12p4 42312 3anidm12p2 42316 uun2221p1 42323 en3lplem2VD 42353 lincvalpr 45647 alimp-no-surprise 46371 |
Copyright terms: Public domain | W3C validator |