| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 1097 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
| 2 | 3ancomb 1098 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrev 1100 wefrc 5613 ordelord 6329 f13dfv 7211 fr3nr 7708 omword 8488 nnmcan 8552 modmulconst 16199 ncoprmlnprm 16639 issubmndb 18679 pmtr3ncomlem1 19352 srgrmhm 20107 isphld 21561 ordtbaslem 23073 xmetpsmet 24234 comet 24399 cphassr 25110 srabn 25258 lgsdi 27243 divsclw 28103 colopp 28714 colinearalglem2 28852 umgr2edg1 29156 nb3grpr 29327 nb3grpr2 29328 nb3gr2nb 29329 cplgr3v 29380 frgr3v 30219 dipassr 30790 bnj170 34665 bnj290 34677 bnj545 34862 bnj571 34873 bnj594 34879 brapply 35912 brrestrict 35923 dfrdg4 35925 cgrid2 35977 cgr3permute3 36021 cgr3permute2 36023 cgr3permute4 36024 cgr3permute5 36025 colinearperm1 36036 colinearperm3 36037 colinearperm2 36038 colinearperm4 36039 colinearperm5 36040 colinearxfr 36049 endofsegid 36059 colinbtwnle 36092 broutsideof2 36096 dmncan2 38057 isltrn2N 40099 oeord2com 43284 uunTT1p2 44768 uunT11p1 44770 uunT12p2 44774 uunT12p4 44776 3anidm12p2 44780 uun2221p1 44787 en3lplem2VD 44817 grtriproplem 47923 grtrif1o 47926 lincvalpr 48403 alimp-no-surprise 49766 |
| Copyright terms: Public domain | W3C validator |