| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 1097 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
| 2 | 3ancomb 1098 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrev 1100 wefrc 5632 ordelord 6354 f13dfv 7249 fr3nr 7748 omword 8534 nnmcan 8598 modmulconst 16258 ncoprmlnprm 16698 issubmndb 18732 pmtr3ncomlem1 19403 srgrmhm 20131 isphld 21563 ordtbaslem 23075 xmetpsmet 24236 comet 24401 cphassr 25112 srabn 25260 lgsdi 27245 divsclw 28098 colopp 28696 colinearalglem2 28834 umgr2edg1 29138 nb3grpr 29309 nb3grpr2 29310 nb3gr2nb 29311 cplgr3v 29362 frgr3v 30204 dipassr 30775 bnj170 34688 bnj290 34700 bnj545 34885 bnj571 34896 bnj594 34902 brapply 35926 brrestrict 35937 dfrdg4 35939 cgrid2 35991 cgr3permute3 36035 cgr3permute2 36037 cgr3permute4 36038 cgr3permute5 36039 colinearperm1 36050 colinearperm3 36051 colinearperm2 36052 colinearperm4 36053 colinearperm5 36054 colinearxfr 36063 endofsegid 36073 colinbtwnle 36106 broutsideof2 36110 dmncan2 38071 isltrn2N 40114 oeord2com 43300 uunTT1p2 44784 uunT11p1 44786 uunT12p2 44790 uunT12p4 44792 3anidm12p2 44796 uun2221p1 44803 en3lplem2VD 44833 grtriproplem 47938 grtrif1o 47941 lincvalpr 48407 alimp-no-surprise 49770 |
| Copyright terms: Public domain | W3C validator |