| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 1097 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
| 2 | 3ancomb 1098 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrev 1100 wefrc 5608 ordelord 6328 f13dfv 7208 fr3nr 7705 omword 8485 nnmcan 8549 modmulconst 16199 ncoprmlnprm 16639 issubmndb 18713 pmtr3ncomlem1 19385 srgrmhm 20140 isphld 21591 ordtbaslem 23103 xmetpsmet 24263 comet 24428 cphassr 25139 srabn 25287 lgsdi 27272 divsclw 28134 colopp 28747 colinearalglem2 28885 umgr2edg1 29189 nb3grpr 29360 nb3grpr2 29361 nb3gr2nb 29362 cplgr3v 29413 frgr3v 30255 dipassr 30826 bnj170 34710 bnj290 34722 bnj545 34907 bnj571 34918 bnj594 34924 brapply 35980 brrestrict 35991 dfrdg4 35993 cgrid2 36045 cgr3permute3 36089 cgr3permute2 36091 cgr3permute4 36092 cgr3permute5 36093 colinearperm1 36104 colinearperm3 36105 colinearperm2 36106 colinearperm4 36107 colinearperm5 36108 colinearxfr 36117 endofsegid 36127 colinbtwnle 36160 broutsideof2 36164 dmncan2 38125 isltrn2N 40167 oeord2com 43352 uunTT1p2 44835 uunT11p1 44837 uunT12p2 44841 uunT12p4 44843 3anidm12p2 44847 uun2221p1 44854 en3lplem2VD 44884 grtriproplem 47978 grtrif1o 47981 lincvalpr 48458 alimp-no-surprise 49821 |
| Copyright terms: Public domain | W3C validator |