| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 1097 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
| 2 | 3ancomb 1098 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrev 1100 wefrc 5635 ordelord 6357 f13dfv 7252 fr3nr 7751 omword 8537 nnmcan 8601 modmulconst 16265 ncoprmlnprm 16705 issubmndb 18739 pmtr3ncomlem1 19410 srgrmhm 20138 isphld 21570 ordtbaslem 23082 xmetpsmet 24243 comet 24408 cphassr 25119 srabn 25267 lgsdi 27252 divsclw 28105 colopp 28703 colinearalglem2 28841 umgr2edg1 29145 nb3grpr 29316 nb3grpr2 29317 nb3gr2nb 29318 cplgr3v 29369 frgr3v 30211 dipassr 30782 bnj170 34695 bnj290 34707 bnj545 34892 bnj571 34903 bnj594 34909 brapply 35933 brrestrict 35944 dfrdg4 35946 cgrid2 35998 cgr3permute3 36042 cgr3permute2 36044 cgr3permute4 36045 cgr3permute5 36046 colinearperm1 36057 colinearperm3 36058 colinearperm2 36059 colinearperm4 36060 colinearperm5 36061 colinearxfr 36070 endofsegid 36080 colinbtwnle 36113 broutsideof2 36117 dmncan2 38078 isltrn2N 40121 oeord2com 43307 uunTT1p2 44791 uunT11p1 44793 uunT12p2 44797 uunT12p4 44799 3anidm12p2 44803 uun2221p1 44810 en3lplem2VD 44840 grtriproplem 47942 grtrif1o 47945 lincvalpr 48411 alimp-no-surprise 49774 |
| Copyright terms: Public domain | W3C validator |