![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version |
Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
Ref | Expression |
---|---|
3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 1098 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
2 | 3ancomb 1099 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3anrev 1101 wefrc 5694 ordelord 6417 f13dfv 7310 fr3nr 7807 omword 8626 nnmcan 8690 modmulconst 16336 ncoprmlnprm 16775 issubmndb 18840 pmtr3ncomlem1 19515 srgrmhm 20249 isphld 21695 ordtbaslem 23217 xmetpsmet 24379 comet 24547 cphassr 25265 srabn 25413 lgsdi 27396 divsclw 28238 colopp 28795 colinearalglem2 28940 umgr2edg1 29246 nb3grpr 29417 nb3grpr2 29418 nb3gr2nb 29419 cplgr3v 29470 frgr3v 30307 dipassr 30878 bnj170 34674 bnj290 34686 bnj545 34871 bnj571 34882 bnj594 34888 brapply 35902 brrestrict 35913 dfrdg4 35915 cgrid2 35967 cgr3permute3 36011 cgr3permute2 36013 cgr3permute4 36014 cgr3permute5 36015 colinearperm1 36026 colinearperm3 36027 colinearperm2 36028 colinearperm4 36029 colinearperm5 36030 colinearxfr 36039 endofsegid 36049 colinbtwnle 36082 broutsideof2 36086 dmncan2 38037 isltrn2N 40077 oeord2com 43273 uunTT1p2 44766 uunT11p1 44768 uunT12p2 44772 uunT12p4 44774 3anidm12p2 44778 uun2221p1 44785 en3lplem2VD 44815 grtriproplem 47790 grtrif1o 47793 lincvalpr 48147 alimp-no-surprise 48875 |
Copyright terms: Public domain | W3C validator |