| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 1097 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
| 2 | 3ancomb 1098 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrev 1100 wefrc 5625 ordelord 6342 f13dfv 7231 fr3nr 7728 omword 8511 nnmcan 8575 modmulconst 16234 ncoprmlnprm 16674 issubmndb 18708 pmtr3ncomlem1 19379 srgrmhm 20107 isphld 21539 ordtbaslem 23051 xmetpsmet 24212 comet 24377 cphassr 25088 srabn 25236 lgsdi 27221 divsclw 28074 colopp 28672 colinearalglem2 28810 umgr2edg1 29114 nb3grpr 29285 nb3grpr2 29286 nb3gr2nb 29287 cplgr3v 29338 frgr3v 30177 dipassr 30748 bnj170 34661 bnj290 34673 bnj545 34858 bnj571 34869 bnj594 34875 brapply 35899 brrestrict 35910 dfrdg4 35912 cgrid2 35964 cgr3permute3 36008 cgr3permute2 36010 cgr3permute4 36011 cgr3permute5 36012 colinearperm1 36023 colinearperm3 36024 colinearperm2 36025 colinearperm4 36026 colinearperm5 36027 colinearxfr 36036 endofsegid 36046 colinbtwnle 36079 broutsideof2 36083 dmncan2 38044 isltrn2N 40087 oeord2com 43273 uunTT1p2 44757 uunT11p1 44759 uunT12p2 44763 uunT12p4 44765 3anidm12p2 44769 uun2221p1 44776 en3lplem2VD 44806 grtriproplem 47911 grtrif1o 47914 lincvalpr 48380 alimp-no-surprise 49743 |
| Copyright terms: Public domain | W3C validator |