![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version |
Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
Ref | Expression |
---|---|
3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 1099 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
2 | 3ancomb 1100 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3anrev 1102 wefrc 5671 ordelord 6387 f13dfv 7272 fr3nr 7759 omword 8570 nnmcan 8634 modmulconst 16231 ncoprmlnprm 16664 issubmndb 18686 pmtr3ncomlem1 19341 srgrmhm 20045 isphld 21207 ordtbaslem 22692 xmetpsmet 23854 comet 24022 cphassr 24729 srabn 24877 lgsdi 26837 divsclw 27645 colopp 28051 colinearalglem2 28196 umgr2edg1 28499 nb3grpr 28670 nb3grpr2 28671 nb3gr2nb 28672 cplgr3v 28723 frgr3v 29559 dipassr 30130 bnj170 33740 bnj290 33752 bnj545 33937 bnj571 33948 bnj594 33954 brapply 34941 brrestrict 34952 dfrdg4 34954 cgrid2 35006 cgr3permute3 35050 cgr3permute2 35052 cgr3permute4 35053 cgr3permute5 35054 colinearperm1 35065 colinearperm3 35066 colinearperm2 35067 colinearperm4 35068 colinearperm5 35069 colinearxfr 35078 endofsegid 35088 colinbtwnle 35121 broutsideof2 35125 dmncan2 36993 isltrn2N 39039 oeord2com 42109 uunTT1p2 43604 uunT11p1 43606 uunT12p2 43610 uunT12p4 43612 3anidm12p2 43616 uun2221p1 43623 en3lplem2VD 43653 lincvalpr 47147 alimp-no-surprise 47876 |
Copyright terms: Public domain | W3C validator |