Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version |
Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
Ref | Expression |
---|---|
3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 1097 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
2 | 3ancomb 1098 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3anrev 1100 wefrc 5584 ordelord 6287 f13dfv 7143 fr3nr 7616 omword 8386 nnmcan 8450 modmulconst 15995 ncoprmlnprm 16430 issubmndb 18442 pmtr3ncomlem1 19079 srgrmhm 19770 isphld 20857 ordtbaslem 22337 xmetpsmet 23499 comet 23667 cphassr 24374 srabn 24522 lgsdi 26480 colopp 27128 colinearalglem2 27273 umgr2edg1 27576 nb3grpr 27747 nb3grpr2 27748 nb3gr2nb 27749 cplgr3v 27800 frgr3v 28635 dipassr 29204 bnj170 32673 bnj290 32685 bnj545 32871 bnj571 32882 bnj594 32888 brapply 34236 brrestrict 34247 dfrdg4 34249 cgrid2 34301 cgr3permute3 34345 cgr3permute2 34347 cgr3permute4 34348 cgr3permute5 34349 colinearperm1 34360 colinearperm3 34361 colinearperm2 34362 colinearperm4 34363 colinearperm5 34364 colinearxfr 34373 endofsegid 34383 colinbtwnle 34416 broutsideof2 34420 dmncan2 36231 isltrn2N 38130 uunTT1p2 42385 uunT11p1 42387 uunT12p2 42391 uunT12p4 42393 3anidm12p2 42397 uun2221p1 42404 en3lplem2VD 42434 lincvalpr 45728 alimp-no-surprise 46454 |
Copyright terms: Public domain | W3C validator |