![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version |
Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
Ref | Expression |
---|---|
3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 1097 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
2 | 3ancomb 1098 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3anrev 1100 wefrc 5682 ordelord 6407 f13dfv 7293 fr3nr 7790 omword 8606 nnmcan 8670 modmulconst 16321 ncoprmlnprm 16761 issubmndb 18830 pmtr3ncomlem1 19505 srgrmhm 20239 isphld 21689 ordtbaslem 23211 xmetpsmet 24373 comet 24541 cphassr 25259 srabn 25407 lgsdi 27392 divsclw 28234 colopp 28791 colinearalglem2 28936 umgr2edg1 29242 nb3grpr 29413 nb3grpr2 29414 nb3gr2nb 29415 cplgr3v 29466 frgr3v 30303 dipassr 30874 bnj170 34690 bnj290 34702 bnj545 34887 bnj571 34898 bnj594 34904 brapply 35919 brrestrict 35930 dfrdg4 35932 cgrid2 35984 cgr3permute3 36028 cgr3permute2 36030 cgr3permute4 36031 cgr3permute5 36032 colinearperm1 36043 colinearperm3 36044 colinearperm2 36045 colinearperm4 36046 colinearperm5 36047 colinearxfr 36056 endofsegid 36066 colinbtwnle 36099 broutsideof2 36103 dmncan2 38063 isltrn2N 40102 oeord2com 43300 uunTT1p2 44792 uunT11p1 44794 uunT12p2 44798 uunT12p4 44800 3anidm12p2 44804 uun2221p1 44811 en3lplem2VD 44841 grtriproplem 47843 grtrif1o 47846 lincvalpr 48263 alimp-no-surprise 49011 |
Copyright terms: Public domain | W3C validator |