| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 1097 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
| 2 | 3ancomb 1098 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrev 1100 wefrc 5625 ordelord 6342 f13dfv 7231 fr3nr 7728 omword 8511 nnmcan 8575 modmulconst 16234 ncoprmlnprm 16674 issubmndb 18714 pmtr3ncomlem1 19387 srgrmhm 20142 isphld 21596 ordtbaslem 23108 xmetpsmet 24269 comet 24434 cphassr 25145 srabn 25293 lgsdi 27278 divsclw 28138 colopp 28749 colinearalglem2 28887 umgr2edg1 29191 nb3grpr 29362 nb3grpr2 29363 nb3gr2nb 29364 cplgr3v 29415 frgr3v 30254 dipassr 30825 bnj170 34681 bnj290 34693 bnj545 34878 bnj571 34889 bnj594 34895 brapply 35919 brrestrict 35930 dfrdg4 35932 cgrid2 35984 cgr3permute3 36028 cgr3permute2 36030 cgr3permute4 36031 cgr3permute5 36032 colinearperm1 36043 colinearperm3 36044 colinearperm2 36045 colinearperm4 36046 colinearperm5 36047 colinearxfr 36056 endofsegid 36066 colinbtwnle 36099 broutsideof2 36103 dmncan2 38064 isltrn2N 40107 oeord2com 43293 uunTT1p2 44777 uunT11p1 44779 uunT12p2 44783 uunT12p4 44785 3anidm12p2 44789 uun2221p1 44796 en3lplem2VD 44826 grtriproplem 47931 grtrif1o 47934 lincvalpr 48400 alimp-no-surprise 49763 |
| Copyright terms: Public domain | W3C validator |