Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uunT1p1 Structured version   Visualization version   GIF version

Theorem uunT1p1 42290
Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
uunT1p1.1 ((𝜑 ∧ ⊤) → 𝜓)
Assertion
Ref Expression
uunT1p1 (𝜑𝜓)

Proof of Theorem uunT1p1
StepHypRef Expression
1 ancom 460 . . 3 ((𝜑 ∧ ⊤) ↔ (⊤ ∧ 𝜑))
2 truan 1550 . . 3 ((⊤ ∧ 𝜑) ↔ 𝜑)
31, 2bitri 274 . 2 ((𝜑 ∧ ⊤) ↔ 𝜑)
4 uunT1p1.1 . 2 ((𝜑 ∧ ⊤) → 𝜓)
53, 4sylbir 234 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wtru 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator