Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uunT1 | Structured version Visualization version GIF version |
Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) Proof was revised to accommodate a possible future version of df-tru 1542. (Revised by David A. Wheeler, 8-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
uunT1.1 | ⊢ ((⊤ ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
uunT1 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 864 | . . 3 ⊢ (𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
2 | tru 1543 | . . . . 5 ⊢ ⊤ | |
3 | biid 260 | . . . . 5 ⊢ (𝜑 ↔ 𝜑) | |
4 | 2, 3 | 2th 263 | . . . 4 ⊢ (⊤ ↔ (𝜑 ↔ 𝜑)) |
5 | exmid 892 | . . . . . 6 ⊢ (𝜑 ∨ ¬ 𝜑) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝜑 ↔ 𝜑) → (𝜑 ∨ ¬ 𝜑)) |
7 | biidd 261 | . . . . 5 ⊢ ((𝜑 ∨ ¬ 𝜑) → (𝜑 ↔ 𝜑)) | |
8 | 6, 7 | impbii 208 | . . . 4 ⊢ ((𝜑 ↔ 𝜑) ↔ (𝜑 ∨ ¬ 𝜑)) |
9 | 4, 8 | bitri 274 | . . 3 ⊢ (⊤ ↔ (𝜑 ∨ ¬ 𝜑)) |
10 | 1, 9 | sylibr 233 | . 2 ⊢ (𝜑 → ⊤) |
11 | uunT1.1 | . 2 ⊢ ((⊤ ∧ 𝜑) → 𝜓) | |
12 | 10, 11 | mpancom 685 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ⊤wtru 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 |
This theorem is referenced by: uunT21 42402 sspwimpALT 42545 |
Copyright terms: Public domain | W3C validator |