|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uunT1 | Structured version Visualization version GIF version | ||
| Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) Proof was revised to accommodate a possible future version of df-tru 1542. (Revised by David A. Wheeler, 8-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| uunT1.1 | ⊢ ((⊤ ∧ 𝜑) → 𝜓) | 
| Ref | Expression | 
|---|---|
| uunT1 | ⊢ (𝜑 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orc 867 | . . 3 ⊢ (𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
| 2 | tru 1543 | . . . . 5 ⊢ ⊤ | |
| 3 | biid 261 | . . . . 5 ⊢ (𝜑 ↔ 𝜑) | |
| 4 | 2, 3 | 2th 264 | . . . 4 ⊢ (⊤ ↔ (𝜑 ↔ 𝜑)) | 
| 5 | exmid 894 | . . . . . 6 ⊢ (𝜑 ∨ ¬ 𝜑) | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝜑 ↔ 𝜑) → (𝜑 ∨ ¬ 𝜑)) | 
| 7 | biidd 262 | . . . . 5 ⊢ ((𝜑 ∨ ¬ 𝜑) → (𝜑 ↔ 𝜑)) | |
| 8 | 6, 7 | impbii 209 | . . . 4 ⊢ ((𝜑 ↔ 𝜑) ↔ (𝜑 ∨ ¬ 𝜑)) | 
| 9 | 4, 8 | bitri 275 | . . 3 ⊢ (⊤ ↔ (𝜑 ∨ ¬ 𝜑)) | 
| 10 | 1, 9 | sylibr 234 | . 2 ⊢ (𝜑 → ⊤) | 
| 11 | uunT1.1 | . 2 ⊢ ((⊤ ∧ 𝜑) → 𝜓) | |
| 12 | 10, 11 | mpancom 688 | 1 ⊢ (𝜑 → 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ⊤wtru 1540 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 | 
| This theorem is referenced by: uunT21 44807 sspwimpALT 44950 | 
| Copyright terms: Public domain | W3C validator |