| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xorbi12i | Structured version Visualization version GIF version | ||
| Description: Equality property for exclusive disjunction. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 21-Apr-2024.) |
| Ref | Expression |
|---|---|
| xorbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| xorbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| xorbi12i | ⊢ ((𝜑 ⊻ 𝜒) ↔ (𝜓 ⊻ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xor 1512 | . . 3 ⊢ ((𝜑 ⊻ 𝜒) ↔ ¬ (𝜑 ↔ 𝜒)) | |
| 2 | xorbi12.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | xorbi12.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
| 4 | 2, 3 | bibi12i 339 | . . 3 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
| 5 | 1, 4 | xchbinx 334 | . 2 ⊢ ((𝜑 ⊻ 𝜒) ↔ ¬ (𝜓 ↔ 𝜃)) |
| 6 | df-xor 1512 | . 2 ⊢ ((𝜓 ⊻ 𝜃) ↔ ¬ (𝜓 ↔ 𝜃)) | |
| 7 | 5, 6 | bitr4i 278 | 1 ⊢ ((𝜑 ⊻ 𝜒) ↔ (𝜓 ⊻ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊻ wxo 1511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-xor 1512 |
| This theorem is referenced by: hadcomb 1600 symdifass 4242 |
| Copyright terms: Public domain | W3C validator |