Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xorbi12i | Structured version Visualization version GIF version |
Description: Equality property for exclusive disjunction. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 21-Apr-2024.) |
Ref | Expression |
---|---|
xorbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
xorbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
xorbi12i | ⊢ ((𝜑 ⊻ 𝜒) ↔ (𝜓 ⊻ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1504 | . . 3 ⊢ ((𝜑 ⊻ 𝜒) ↔ ¬ (𝜑 ↔ 𝜒)) | |
2 | xorbi12.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
3 | xorbi12.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
4 | 2, 3 | bibi12i 339 | . . 3 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
5 | 1, 4 | xchbinx 333 | . 2 ⊢ ((𝜑 ⊻ 𝜒) ↔ ¬ (𝜓 ↔ 𝜃)) |
6 | df-xor 1504 | . 2 ⊢ ((𝜓 ⊻ 𝜃) ↔ ¬ (𝜓 ↔ 𝜃)) | |
7 | 5, 6 | bitr4i 277 | 1 ⊢ ((𝜑 ⊻ 𝜒) ↔ (𝜓 ⊻ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ⊻ wxo 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-xor 1504 |
This theorem is referenced by: hadcomaOLD 1602 hadcomb 1603 symdifass 4182 |
Copyright terms: Public domain | W3C validator |