Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symdifass | Structured version Visualization version GIF version |
Description: Symmetric difference is associative. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by BJ, 7-Sep-2022.) |
Ref | Expression |
---|---|
symdifass | ⊢ ((𝐴 △ 𝐵) △ 𝐶) = (𝐴 △ (𝐵 △ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsymdifxor 4189 | . . 3 ⊢ (𝑥 ∈ ((𝐴 △ 𝐵) △ 𝐶) ↔ (𝑥 ∈ (𝐴 △ 𝐵) ⊻ 𝑥 ∈ 𝐶)) | |
2 | elsymdifxor 4189 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 △ 𝐵) ↔ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)) | |
3 | biid 260 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 ↔ 𝑥 ∈ 𝐶) | |
4 | 2, 3 | xorbi12i 1520 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 △ 𝐵) ⊻ 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵) ⊻ 𝑥 ∈ 𝐶)) |
5 | xorass 1511 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵) ⊻ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ⊻ (𝑥 ∈ 𝐵 ⊻ 𝑥 ∈ 𝐶))) | |
6 | biid 260 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
7 | elsymdifxor 4189 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 △ 𝐶) ↔ (𝑥 ∈ 𝐵 ⊻ 𝑥 ∈ 𝐶)) | |
8 | 7 | bicomi 223 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ⊻ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐵 △ 𝐶)) |
9 | 6, 8 | xorbi12i 1520 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ⊻ (𝑥 ∈ 𝐵 ⊻ 𝑥 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ (𝐵 △ 𝐶))) |
10 | 4, 5, 9 | 3bitri 297 | . . 3 ⊢ ((𝑥 ∈ (𝐴 △ 𝐵) ⊻ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ (𝐵 △ 𝐶))) |
11 | elsymdifxor 4189 | . . . 4 ⊢ (𝑥 ∈ (𝐴 △ (𝐵 △ 𝐶)) ↔ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ (𝐵 △ 𝐶))) | |
12 | 11 | bicomi 223 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ (𝐵 △ 𝐶)) ↔ 𝑥 ∈ (𝐴 △ (𝐵 △ 𝐶))) |
13 | 1, 10, 12 | 3bitri 297 | . 2 ⊢ (𝑥 ∈ ((𝐴 △ 𝐵) △ 𝐶) ↔ 𝑥 ∈ (𝐴 △ (𝐵 △ 𝐶))) |
14 | 13 | eqriv 2737 | 1 ⊢ ((𝐴 △ 𝐵) △ 𝐶) = (𝐴 △ (𝐵 △ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ⊻ wxo 1506 = wceq 1542 ∈ wcel 2110 △ csymdif 4181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-xor 1507 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-dif 3895 df-un 3897 df-symdif 4182 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |