| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symdifass | Structured version Visualization version GIF version | ||
| Description: Symmetric difference is associative. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by BJ, 7-Sep-2022.) |
| Ref | Expression |
|---|---|
| symdifass | ⊢ ((𝐴 △ 𝐵) △ 𝐶) = (𝐴 △ (𝐵 △ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsymdifxor 4240 | . . 3 ⊢ (𝑥 ∈ ((𝐴 △ 𝐵) △ 𝐶) ↔ (𝑥 ∈ (𝐴 △ 𝐵) ⊻ 𝑥 ∈ 𝐶)) | |
| 2 | elsymdifxor 4240 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 △ 𝐵) ↔ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)) | |
| 3 | biid 261 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 ↔ 𝑥 ∈ 𝐶) | |
| 4 | 2, 3 | xorbi12i 1524 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 △ 𝐵) ⊻ 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵) ⊻ 𝑥 ∈ 𝐶)) |
| 5 | xorass 1515 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵) ⊻ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ⊻ (𝑥 ∈ 𝐵 ⊻ 𝑥 ∈ 𝐶))) | |
| 6 | biid 261 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
| 7 | elsymdifxor 4240 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 △ 𝐶) ↔ (𝑥 ∈ 𝐵 ⊻ 𝑥 ∈ 𝐶)) | |
| 8 | 7 | bicomi 224 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ⊻ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐵 △ 𝐶)) |
| 9 | 6, 8 | xorbi12i 1524 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ⊻ (𝑥 ∈ 𝐵 ⊻ 𝑥 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ (𝐵 △ 𝐶))) |
| 10 | 4, 5, 9 | 3bitri 297 | . . 3 ⊢ ((𝑥 ∈ (𝐴 △ 𝐵) ⊻ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ (𝐵 △ 𝐶))) |
| 11 | elsymdifxor 4240 | . . . 4 ⊢ (𝑥 ∈ (𝐴 △ (𝐵 △ 𝐶)) ↔ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ (𝐵 △ 𝐶))) | |
| 12 | 11 | bicomi 224 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ (𝐵 △ 𝐶)) ↔ 𝑥 ∈ (𝐴 △ (𝐵 △ 𝐶))) |
| 13 | 1, 10, 12 | 3bitri 297 | . 2 ⊢ (𝑥 ∈ ((𝐴 △ 𝐵) △ 𝐶) ↔ 𝑥 ∈ (𝐴 △ (𝐵 △ 𝐶))) |
| 14 | 13 | eqriv 2733 | 1 ⊢ ((𝐴 △ 𝐵) △ 𝐶) = (𝐴 △ (𝐵 △ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊻ wxo 1511 = wceq 1540 ∈ wcel 2109 △ csymdif 4232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-xor 1512 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-symdif 4233 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |