| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi12i | Structured version Visualization version GIF version | ||
| Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| bibi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bibi12i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bibi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 1 | bibi2i 337 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜑 ↔ 𝜃)) |
| 3 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | bibi1i 338 | . 2 ⊢ ((𝜑 ↔ 𝜃) ↔ (𝜓 ↔ 𝜃)) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.32 573 biadan 818 orbidi 954 pm5.7 955 xorbi12i 1524 norass 1537 vn0 4304 ab0orv 4342 rexprg 4657 brsymdif 5161 nfnid 5325 asymref 6077 isocnv2 7288 zfcndrep 10543 f1omvdco3 19355 brtxpsd 35855 eliminable-abeqab 36829 bj-sbeq 36862 bj-rcleqf 36986 symrefref3 38528 eldisjn0el 38771 abbibw 42638 rp-fakeoranass 43476 rp-fakeinunass 43477 relexp0eq 43663 permaxext 44968 absnsb 47001 ichcom 47433 ichbi12i 47434 |
| Copyright terms: Public domain | W3C validator |