Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bibi12i | Structured version Visualization version GIF version |
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bibi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bibi12i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | bibi2i 338 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜑 ↔ 𝜃)) |
3 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | bibi1i 339 | . 2 ⊢ ((𝜑 ↔ 𝜃) ↔ (𝜓 ↔ 𝜃)) |
5 | 2, 4 | bitri 274 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.32 574 biadan 816 orbidi 950 pm5.7 951 xorbi12i 1520 xorbi12iOLD 1521 norass 1535 norassOLD 1536 abbiOLD 2881 rexbiOLD 3175 vn0 4273 ab0OLD 4310 ab0orv 4313 rexprg 4633 brsymdif 5134 nfnid 5299 asymref 6026 isocnv2 7211 zfcndrep 10379 f1omvdco3 19066 brtxpsd 34205 eliminable-abeqab 35061 bj-sbeq 35095 bj-rcleqf 35224 symrefref3 36685 rp-fakeoranass 41128 rp-fakeinunass 41129 relexp0eq 41316 absnsb 44532 ichcom 44922 ichbi12i 44923 |
Copyright terms: Public domain | W3C validator |