![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi12i | Structured version Visualization version GIF version |
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bibi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bibi12i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | bibi2i 337 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜑 ↔ 𝜃)) |
3 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | bibi1i 338 | . 2 ⊢ ((𝜑 ↔ 𝜃) ↔ (𝜓 ↔ 𝜃)) |
5 | 2, 4 | bitri 275 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: pm5.32 573 biadan 818 orbidi 953 pm5.7 954 xorbi12i 1521 norass 1534 rexbiOLD 3111 vn0 4368 ab0OLD 4403 ab0orv 4406 rexprg 4721 brsymdif 5225 nfnid 5393 asymref 6148 isocnv2 7367 zfcndrep 10683 f1omvdco3 19491 brtxpsd 35858 eliminable-abeqab 36834 bj-sbeq 36867 bj-rcleqf 36991 symrefref3 38520 eldisjn0el 38762 abbibw 42632 rp-fakeoranass 43476 rp-fakeinunass 43477 relexp0eq 43663 absnsb 46942 ichcom 47333 ichbi12i 47334 |
Copyright terms: Public domain | W3C validator |