| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi12i | Structured version Visualization version GIF version | ||
| Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| bibi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bibi12i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bibi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 1 | bibi2i 337 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜑 ↔ 𝜃)) |
| 3 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | bibi1i 338 | . 2 ⊢ ((𝜑 ↔ 𝜃) ↔ (𝜓 ↔ 𝜃)) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.32 573 biadan 818 orbidi 954 pm5.7 955 xorbi12i 1524 norass 1537 vn0 4325 ab0orv 4363 rexprg 4678 brsymdif 5183 nfnid 5350 asymref 6110 isocnv2 7329 zfcndrep 10633 f1omvdco3 19435 brtxpsd 35917 eliminable-abeqab 36891 bj-sbeq 36924 bj-rcleqf 37048 symrefref3 38587 eldisjn0el 38829 abbibw 42667 rp-fakeoranass 43505 rp-fakeinunass 43506 relexp0eq 43692 permaxext 44997 absnsb 47023 ichcom 47440 ichbi12i 47441 |
| Copyright terms: Public domain | W3C validator |