MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi12i Structured version   Visualization version   GIF version

Theorem bibi12i 339
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.)
Hypotheses
Ref Expression
bibi2i.1 (𝜑𝜓)
bibi12i.2 (𝜒𝜃)
Assertion
Ref Expression
bibi12i ((𝜑𝜒) ↔ (𝜓𝜃))

Proof of Theorem bibi12i
StepHypRef Expression
1 bibi12i.2 . . 3 (𝜒𝜃)
21bibi2i 337 . 2 ((𝜑𝜒) ↔ (𝜑𝜃))
3 bibi2i.1 . . 3 (𝜑𝜓)
43bibi1i 338 . 2 ((𝜑𝜃) ↔ (𝜓𝜃))
52, 4bitri 274 1 ((𝜑𝜒) ↔ (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  pm5.32  573  biadan  815  orbidi  949  pm5.7  950  xorbi12i  1517  xorbi12iOLD  1518  norass  1535  norassOLD  1536  abbiOLD  2879  rexbiOLD  3170  vn0  4269  ab0OLD  4306  ab0orv  4309  rexprg  4629  brsymdif  5129  nfnid  5293  asymref  6010  isocnv2  7182  zfcndrep  10301  f1omvdco3  18972  brtxpsd  34123  eliminable-abeqab  34979  bj-sbeq  35013  bj-rcleqf  35142  symrefref3  36605  rp-fakeoranass  41019  rp-fakeinunass  41020  relexp0eq  41198  absnsb  44408  ichcom  44799  ichbi12i  44800
  Copyright terms: Public domain W3C validator