MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi12i Structured version   Visualization version   GIF version

Theorem bibi12i 339
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.)
Hypotheses
Ref Expression
bibi2i.1 (𝜑𝜓)
bibi12i.2 (𝜒𝜃)
Assertion
Ref Expression
bibi12i ((𝜑𝜒) ↔ (𝜓𝜃))

Proof of Theorem bibi12i
StepHypRef Expression
1 bibi12i.2 . . 3 (𝜒𝜃)
21bibi2i 337 . 2 ((𝜑𝜒) ↔ (𝜑𝜃))
3 bibi2i.1 . . 3 (𝜑𝜓)
43bibi1i 338 . 2 ((𝜑𝜃) ↔ (𝜓𝜃))
52, 4bitri 275 1 ((𝜑𝜒) ↔ (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  pm5.32  573  biadan  818  orbidi  954  pm5.7  955  xorbi12i  1525  norass  1538  vn0  4290  ab0orv  4328  rexprg  4645  brsymdif  5145  nfnid  5308  asymref  6058  isocnv2  7260  zfcndrep  10500  f1omvdco3  19356  brtxpsd  35928  eliminable-abeqab  36902  bj-sbeq  36935  bj-rcleqf  37059  symrefref3  38601  eldisjn0el  38844  abbibw  42710  rp-fakeoranass  43547  rp-fakeinunass  43548  relexp0eq  43734  permaxext  45038  absnsb  47058  ichcom  47490  ichbi12i  47491
  Copyright terms: Public domain W3C validator