MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi12i Structured version   Visualization version   GIF version

Theorem bibi12i 339
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.)
Hypotheses
Ref Expression
bibi2i.1 (𝜑𝜓)
bibi12i.2 (𝜒𝜃)
Assertion
Ref Expression
bibi12i ((𝜑𝜒) ↔ (𝜓𝜃))

Proof of Theorem bibi12i
StepHypRef Expression
1 bibi12i.2 . . 3 (𝜒𝜃)
21bibi2i 337 . 2 ((𝜑𝜒) ↔ (𝜑𝜃))
3 bibi2i.1 . . 3 (𝜑𝜓)
43bibi1i 338 . 2 ((𝜑𝜃) ↔ (𝜓𝜃))
52, 4bitri 275 1 ((𝜑𝜒) ↔ (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  pm5.32  573  biadan  818  orbidi  954  pm5.7  955  xorbi12i  1524  norass  1537  vn0  4304  ab0orv  4342  rexprg  4657  brsymdif  5161  nfnid  5325  asymref  6077  isocnv2  7288  zfcndrep  10543  f1omvdco3  19355  brtxpsd  35855  eliminable-abeqab  36829  bj-sbeq  36862  bj-rcleqf  36986  symrefref3  38528  eldisjn0el  38771  abbibw  42638  rp-fakeoranass  43476  rp-fakeinunass  43477  relexp0eq  43663  permaxext  44968  absnsb  47001  ichcom  47433  ichbi12i  47434
  Copyright terms: Public domain W3C validator