![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi12i | Structured version Visualization version GIF version |
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bibi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bibi12i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | bibi2i 337 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜑 ↔ 𝜃)) |
3 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | bibi1i 338 | . 2 ⊢ ((𝜑 ↔ 𝜃) ↔ (𝜓 ↔ 𝜃)) |
5 | 2, 4 | bitri 274 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.32 574 biadan 817 orbidi 951 pm5.7 952 xorbi12i 1523 xorbi12iOLD 1524 norass 1538 rexbiOLD 3105 vn0 4338 ab0OLD 4375 ab0orv 4378 rexprg 4700 brsymdif 5207 nfnid 5373 asymref 6117 isocnv2 7327 zfcndrep 10608 f1omvdco3 19316 brtxpsd 34861 eliminable-abeqab 35742 bj-sbeq 35776 bj-rcleqf 35901 symrefref3 37429 eldisjn0el 37671 rp-fakeoranass 42255 rp-fakeinunass 42256 relexp0eq 42442 absnsb 45727 ichcom 46117 ichbi12i 46118 |
Copyright terms: Public domain | W3C validator |