![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi12i | Structured version Visualization version GIF version |
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bibi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bibi12i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | bibi2i 338 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜑 ↔ 𝜃)) |
3 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | bibi1i 339 | . 2 ⊢ ((𝜑 ↔ 𝜃) ↔ (𝜓 ↔ 𝜃)) |
5 | 2, 4 | bitri 275 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.32 575 biadan 818 orbidi 952 pm5.7 953 xorbi12i 1524 xorbi12iOLD 1525 norass 1539 rexbiOLD 3106 vn0 4339 ab0OLD 4376 ab0orv 4379 rexprg 4701 brsymdif 5208 nfnid 5374 asymref 6118 isocnv2 7328 zfcndrep 10609 f1omvdco3 19317 brtxpsd 34866 eliminable-abeqab 35747 bj-sbeq 35781 bj-rcleqf 35906 symrefref3 37434 eldisjn0el 37676 rp-fakeoranass 42265 rp-fakeinunass 42266 relexp0eq 42452 absnsb 45737 ichcom 46127 ichbi12i 46128 |
Copyright terms: Public domain | W3C validator |