Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bibi12i | Structured version Visualization version GIF version |
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bibi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bibi12i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | bibi2i 337 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜑 ↔ 𝜃)) |
3 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | bibi1i 338 | . 2 ⊢ ((𝜑 ↔ 𝜃) ↔ (𝜓 ↔ 𝜃)) |
5 | 2, 4 | bitri 274 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.32 574 biadan 816 orbidi 950 pm5.7 951 xorbi12i 1522 xorbi12iOLD 1523 norass 1537 rexbiOLD 3105 vn0 4282 ab0OLD 4319 ab0orv 4322 rexprg 4640 brsymdif 5144 nfnid 5311 asymref 6041 isocnv2 7239 zfcndrep 10440 f1omvdco3 19124 brtxpsd 34257 eliminable-abeqab 35112 bj-sbeq 35146 bj-rcleqf 35275 symrefref3 36790 eldisjn0el 37032 rp-fakeoranass 41349 rp-fakeinunass 41350 relexp0eq 41537 absnsb 44780 ichcom 45170 ichbi12i 45171 |
Copyright terms: Public domain | W3C validator |