MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi12i Structured version   Visualization version   GIF version

Theorem bibi12i 339
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.)
Hypotheses
Ref Expression
bibi2i.1 (𝜑𝜓)
bibi12i.2 (𝜒𝜃)
Assertion
Ref Expression
bibi12i ((𝜑𝜒) ↔ (𝜓𝜃))

Proof of Theorem bibi12i
StepHypRef Expression
1 bibi12i.2 . . 3 (𝜒𝜃)
21bibi2i 337 . 2 ((𝜑𝜒) ↔ (𝜑𝜃))
3 bibi2i.1 . . 3 (𝜑𝜓)
43bibi1i 338 . 2 ((𝜑𝜃) ↔ (𝜓𝜃))
52, 4bitri 274 1 ((𝜑𝜒) ↔ (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  pm5.32  574  biadan  817  orbidi  951  pm5.7  952  xorbi12i  1523  xorbi12iOLD  1524  norass  1538  rexbiOLD  3105  vn0  4338  ab0OLD  4375  ab0orv  4378  rexprg  4700  brsymdif  5207  nfnid  5373  asymref  6117  isocnv2  7327  zfcndrep  10608  f1omvdco3  19316  brtxpsd  34861  eliminable-abeqab  35742  bj-sbeq  35776  bj-rcleqf  35901  symrefref3  37429  eldisjn0el  37671  rp-fakeoranass  42255  rp-fakeinunass  42256  relexp0eq  42442  absnsb  45727  ichcom  46117  ichbi12i  46118
  Copyright terms: Public domain W3C validator