MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi12i Structured version   Visualization version   GIF version

Theorem bibi12i 339
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.)
Hypotheses
Ref Expression
bibi2i.1 (𝜑𝜓)
bibi12i.2 (𝜒𝜃)
Assertion
Ref Expression
bibi12i ((𝜑𝜒) ↔ (𝜓𝜃))

Proof of Theorem bibi12i
StepHypRef Expression
1 bibi12i.2 . . 3 (𝜒𝜃)
21bibi2i 337 . 2 ((𝜑𝜒) ↔ (𝜑𝜃))
3 bibi2i.1 . . 3 (𝜑𝜓)
43bibi1i 338 . 2 ((𝜑𝜃) ↔ (𝜓𝜃))
52, 4bitri 275 1 ((𝜑𝜒) ↔ (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  pm5.32  573  biadan  818  orbidi  954  pm5.7  955  xorbi12i  1524  norass  1537  vn0  4308  ab0orv  4346  rexprg  4661  brsymdif  5166  nfnid  5330  asymref  6089  isocnv2  7306  zfcndrep  10567  f1omvdco3  19379  brtxpsd  35882  eliminable-abeqab  36856  bj-sbeq  36889  bj-rcleqf  37013  symrefref3  38555  eldisjn0el  38798  abbibw  42665  rp-fakeoranass  43503  rp-fakeinunass  43504  relexp0eq  43690  permaxext  44995  absnsb  47028  ichcom  47460  ichbi12i  47461
  Copyright terms: Public domain W3C validator