MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi12i Structured version   Visualization version   GIF version

Theorem bibi12i 339
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.)
Hypotheses
Ref Expression
bibi2i.1 (𝜑𝜓)
bibi12i.2 (𝜒𝜃)
Assertion
Ref Expression
bibi12i ((𝜑𝜒) ↔ (𝜓𝜃))

Proof of Theorem bibi12i
StepHypRef Expression
1 bibi12i.2 . . 3 (𝜒𝜃)
21bibi2i 337 . 2 ((𝜑𝜒) ↔ (𝜑𝜃))
3 bibi2i.1 . . 3 (𝜑𝜓)
43bibi1i 338 . 2 ((𝜑𝜃) ↔ (𝜓𝜃))
52, 4bitri 275 1 ((𝜑𝜒) ↔ (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  pm5.32  573  biadan  818  orbidi  954  pm5.7  955  xorbi12i  1524  norass  1537  vn0  4325  ab0orv  4363  rexprg  4678  brsymdif  5183  nfnid  5350  asymref  6110  isocnv2  7329  zfcndrep  10633  f1omvdco3  19435  brtxpsd  35917  eliminable-abeqab  36891  bj-sbeq  36924  bj-rcleqf  37048  symrefref3  38587  eldisjn0el  38829  abbibw  42667  rp-fakeoranass  43505  rp-fakeinunass  43506  relexp0eq  43692  permaxext  44997  absnsb  47023  ichcom  47440  ichbi12i  47441
  Copyright terms: Public domain W3C validator