MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi12i Structured version   Visualization version   GIF version

Theorem bibi12i 339
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.)
Hypotheses
Ref Expression
bibi2i.1 (𝜑𝜓)
bibi12i.2 (𝜒𝜃)
Assertion
Ref Expression
bibi12i ((𝜑𝜒) ↔ (𝜓𝜃))

Proof of Theorem bibi12i
StepHypRef Expression
1 bibi12i.2 . . 3 (𝜒𝜃)
21bibi2i 337 . 2 ((𝜑𝜒) ↔ (𝜑𝜃))
3 bibi2i.1 . . 3 (𝜑𝜓)
43bibi1i 338 . 2 ((𝜑𝜃) ↔ (𝜓𝜃))
52, 4bitri 274 1 ((𝜑𝜒) ↔ (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  pm5.32  574  biadan  816  orbidi  950  pm5.7  951  xorbi12i  1522  xorbi12iOLD  1523  norass  1537  rexbiOLD  3105  vn0  4282  ab0OLD  4319  ab0orv  4322  rexprg  4640  brsymdif  5144  nfnid  5311  asymref  6041  isocnv2  7239  zfcndrep  10440  f1omvdco3  19124  brtxpsd  34257  eliminable-abeqab  35112  bj-sbeq  35146  bj-rcleqf  35275  symrefref3  36790  eldisjn0el  37032  rp-fakeoranass  41349  rp-fakeinunass  41350  relexp0eq  41537  absnsb  44780  ichcom  45170  ichbi12i  45171
  Copyright terms: Public domain W3C validator