Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bibi12i | Structured version Visualization version GIF version |
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bibi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bibi12i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | bibi2i 341 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜑 ↔ 𝜃)) |
3 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | bibi1i 342 | . 2 ⊢ ((𝜑 ↔ 𝜃) ↔ (𝜓 ↔ 𝜃)) |
5 | 2, 4 | bitri 278 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: pm5.32 577 biadan 818 orbidi 950 pm5.7 951 xorbi12i 1516 xorbi12iOLD 1517 norass 1534 norassOLD 1535 abbiOLD 2892 rexbi 3169 vn0 4237 ab0 4272 ab0orv 4275 brsymdif 5091 nfnid 5244 asymref 5948 isocnv2 7078 zfcndrep 10074 f1omvdco3 18644 brtxpsd 33745 eliminable-abeqab 34587 bj-sbeq 34622 bj-rcleqf 34742 symrefref3 36240 rp-fakeoranass 40595 rp-fakeinunass 40596 relexp0eq 40775 absnsb 43985 ichcom 44344 ichbi12i 44345 |
Copyright terms: Public domain | W3C validator |