Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bibi12i | Structured version Visualization version GIF version |
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bibi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bibi12i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | bibi2i 337 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜑 ↔ 𝜃)) |
3 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | bibi1i 338 | . 2 ⊢ ((𝜑 ↔ 𝜃) ↔ (𝜓 ↔ 𝜃)) |
5 | 2, 4 | bitri 274 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.32 573 biadan 815 orbidi 949 pm5.7 950 xorbi12i 1517 xorbi12iOLD 1518 norass 1535 norassOLD 1536 abbiOLD 2879 rexbiOLD 3170 vn0 4269 ab0OLD 4306 ab0orv 4309 rexprg 4629 brsymdif 5129 nfnid 5293 asymref 6010 isocnv2 7182 zfcndrep 10301 f1omvdco3 18972 brtxpsd 34123 eliminable-abeqab 34979 bj-sbeq 35013 bj-rcleqf 35142 symrefref3 36605 rp-fakeoranass 41019 rp-fakeinunass 41020 relexp0eq 41198 absnsb 44408 ichcom 44799 ichbi12i 44800 |
Copyright terms: Public domain | W3C validator |