MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi12i Structured version   Visualization version   GIF version

Theorem bibi12i 339
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.)
Hypotheses
Ref Expression
bibi2i.1 (𝜑𝜓)
bibi12i.2 (𝜒𝜃)
Assertion
Ref Expression
bibi12i ((𝜑𝜒) ↔ (𝜓𝜃))

Proof of Theorem bibi12i
StepHypRef Expression
1 bibi12i.2 . . 3 (𝜒𝜃)
21bibi2i 337 . 2 ((𝜑𝜒) ↔ (𝜑𝜃))
3 bibi2i.1 . . 3 (𝜑𝜓)
43bibi1i 338 . 2 ((𝜑𝜃) ↔ (𝜓𝜃))
52, 4bitri 275 1 ((𝜑𝜒) ↔ (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  pm5.32  573  biadan  819  orbidi  954  pm5.7  955  xorbi12i  1521  norass  1534  rexbiOLD  3103  vn0  4351  ab0orv  4389  rexprg  4702  brsymdif  5207  nfnid  5381  asymref  6139  isocnv2  7351  zfcndrep  10652  f1omvdco3  19482  brtxpsd  35876  eliminable-abeqab  36851  bj-sbeq  36884  bj-rcleqf  37008  symrefref3  38546  eldisjn0el  38788  abbibw  42664  rp-fakeoranass  43504  rp-fakeinunass  43505  relexp0eq  43691  absnsb  46977  ichcom  47384  ichbi12i  47385
  Copyright terms: Public domain W3C validator