MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi12i Structured version   Visualization version   GIF version

Theorem bibi12i 339
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.)
Hypotheses
Ref Expression
bibi2i.1 (𝜑𝜓)
bibi12i.2 (𝜒𝜃)
Assertion
Ref Expression
bibi12i ((𝜑𝜒) ↔ (𝜓𝜃))

Proof of Theorem bibi12i
StepHypRef Expression
1 bibi12i.2 . . 3 (𝜒𝜃)
21bibi2i 337 . 2 ((𝜑𝜒) ↔ (𝜑𝜃))
3 bibi2i.1 . . 3 (𝜑𝜓)
43bibi1i 338 . 2 ((𝜑𝜃) ↔ (𝜓𝜃))
52, 4bitri 275 1 ((𝜑𝜒) ↔ (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  pm5.32  573  biadan  818  orbidi  954  pm5.7  955  xorbi12i  1525  norass  1538  rexprg  4651  brsymdif  5154  nfnid  5317  asymref  6070  isocnv2  7274  zfcndrep  10516  f1omvdco3  19369  brtxpsd  36008  eliminable-abeqab  36985  bj-sbeq  37018  bj-rcleqf  37142  symrefref3  38733  eldisjn0el  38977  abbibw  42835  rp-fakeoranass  43671  rp-fakeinunass  43672  relexp0eq  43858  permaxext  45162  absnsb  47189  ichcom  47621  ichbi12i  47622
  Copyright terms: Public domain W3C validator