|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hadcomb | Structured version Visualization version GIF version | ||
| Description: Commutative law for the adders sum. (Contributed by Mario Carneiro, 4-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| hadcomb | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜑, 𝜒, 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biid 261 | . . 3 ⊢ (𝜑 ↔ 𝜑) | |
| 2 | xorcom 1514 | . . 3 ⊢ ((𝜓 ⊻ 𝜒) ↔ (𝜒 ⊻ 𝜓)) | |
| 3 | 1, 2 | xorbi12i 1524 | . 2 ⊢ ((𝜑 ⊻ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ⊻ (𝜒 ⊻ 𝜓))) | 
| 4 | hadass 1597 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) | |
| 5 | hadass 1597 | . 2 ⊢ (hadd(𝜑, 𝜒, 𝜓) ↔ (𝜑 ⊻ (𝜒 ⊻ 𝜓))) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜑, 𝜒, 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ⊻ wxo 1511 haddwhad 1593 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-xor 1512 df-had 1594 | 
| This theorem is referenced by: hadrot 1601 | 
| Copyright terms: Public domain | W3C validator |