Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hadcomb | Structured version Visualization version GIF version |
Description: Commutative law for the adders sum. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
hadcomb | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜑, 𝜒, 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . . 3 ⊢ (𝜑 ↔ 𝜑) | |
2 | xorcom 1511 | . . 3 ⊢ ((𝜓 ⊻ 𝜒) ↔ (𝜒 ⊻ 𝜓)) | |
3 | 1, 2 | xorbi12i 1522 | . 2 ⊢ ((𝜑 ⊻ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ⊻ (𝜒 ⊻ 𝜓))) |
4 | hadass 1597 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) | |
5 | hadass 1597 | . 2 ⊢ (hadd(𝜑, 𝜒, 𝜓) ↔ (𝜑 ⊻ (𝜒 ⊻ 𝜓))) | |
6 | 3, 4, 5 | 3bitr4i 302 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜑, 𝜒, 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊻ wxo 1508 haddwhad 1593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-xor 1509 df-had 1594 |
This theorem is referenced by: hadrot 1601 |
Copyright terms: Public domain | W3C validator |