MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hadcomb Structured version   Visualization version   GIF version

Theorem hadcomb 1605
Description: Commutative law for the adders sum. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
hadcomb (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜑, 𝜒, 𝜓))

Proof of Theorem hadcomb
StepHypRef Expression
1 biid 260 . . 3 (𝜑𝜑)
2 xorcom 1508 . . 3 ((𝜓𝜒) ↔ (𝜒𝜓))
31, 2xorbi12i 1519 . 2 ((𝜑 ⊻ (𝜓𝜒)) ↔ (𝜑 ⊻ (𝜒𝜓)))
4 hadass 1601 . 2 (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓𝜒)))
5 hadass 1601 . 2 (hadd(𝜑, 𝜒, 𝜓) ↔ (𝜑 ⊻ (𝜒𝜓)))
63, 4, 53bitr4i 302 1 (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜑, 𝜒, 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wxo 1505  haddwhad 1597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-xor 1506  df-had 1598
This theorem is referenced by:  hadrot  1606
  Copyright terms: Public domain W3C validator