MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo4 Structured version   Visualization version   GIF version

Theorem zeo4 15950
Description: An integer is even or odd but not both. With this representation of even and odd integers, this variant of zeo2 12312 follows immediately from the principle of double negation, see notnotb 318. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
zeo4 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ¬ ¬ 2 ∥ 𝑁))

Proof of Theorem zeo4
StepHypRef Expression
1 notnotb 318 . 2 (2 ∥ 𝑁 ↔ ¬ ¬ 2 ∥ 𝑁)
21a1i 11 1 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ¬ ¬ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wcel 2112   class class class wbr 5070  2c2 11933  cz 12224  cdvds 15866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator