MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo3 Structured version   Visualization version   GIF version

Theorem zeo3 15686
Description: An integer is even or odd. With this representation of even and odd integers, this variant of zeo 12065 follows immediately from the law of excluded middle, see exmidd 893. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
zeo3 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁))

Proof of Theorem zeo3
StepHypRef Expression
1 exmidd 893 1 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844  wcel 2115   class class class wbr 5052  2c2 11689  cz 11978  cdvds 15607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-or 845
This theorem is referenced by:  zeo5  15705
  Copyright terms: Public domain W3C validator