MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo3 Structured version   Visualization version   GIF version

Theorem zeo3 16371
Description: An integer is even or odd. With this representation of even and odd integers, this variant of zeo 12702 follows immediately from the law of excluded middle, see exmidd 895. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
zeo3 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁))

Proof of Theorem zeo3
StepHypRef Expression
1 exmidd 895 1 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847  wcel 2106   class class class wbr 5148  2c2 12319  cz 12611  cdvds 16287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  zeo5  16390
  Copyright terms: Public domain W3C validator