Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zeo3 | Structured version Visualization version GIF version |
Description: An integer is even or odd. With this representation of even and odd integers, this variant of zeo 12520 follows immediately from the law of excluded middle, see exmidd 895. (Contributed by AV, 17-Jun-2021.) |
Ref | Expression |
---|---|
zeo3 | ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidd 895 | 1 ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 ∈ wcel 2107 class class class wbr 5104 2c2 12142 ℤcz 12433 ∥ cdvds 16071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: zeo5 16173 |
Copyright terms: Public domain | W3C validator |