MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo3 Structured version   Visualization version   GIF version

Theorem zeo3 15949
Description: An integer is even or odd. With this representation of even and odd integers, this variant of zeo 12311 follows immediately from the law of excluded middle, see exmidd 896. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
zeo3 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁))

Proof of Theorem zeo3
StepHypRef Expression
1 exmidd 896 1 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847  wcel 2112   class class class wbr 5070  2c2 11933  cz 12224  cdvds 15866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-or 848
This theorem is referenced by:  zeo5  15968
  Copyright terms: Public domain W3C validator