![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zeo3 | Structured version Visualization version GIF version |
Description: An integer is even or odd. With this representation of even and odd integers, this variant of zeo 12673 follows immediately from the law of excluded middle, see exmidd 894. (Contributed by AV, 17-Jun-2021.) |
Ref | Expression |
---|---|
zeo3 | ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidd 894 | 1 ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 ∈ wcel 2099 class class class wbr 5143 2c2 12292 ℤcz 12583 ∥ cdvds 16225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: zeo5 16327 |
Copyright terms: Public domain | W3C validator |