![]() |
Metamath
Proof Explorer Theorem List (p. 163 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | efmival 16201 | The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006.) |
⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴)))) | ||
Theorem | sinhval 16202 | Value of the hyperbolic sine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2)) | ||
Theorem | coshval 16203 | Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) | ||
Theorem | resinhcl 16204 | The hyperbolic sine of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → ((sin‘(i · 𝐴)) / i) ∈ ℝ) | ||
Theorem | rpcoshcl 16205 | The hyperbolic cosine of a real number is a positive real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+) | ||
Theorem | recoshcl 16206 | The hyperbolic cosine of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ) | ||
Theorem | retanhcl 16207 | The hyperbolic tangent of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ) | ||
Theorem | tanhlt1 16208 | The hyperbolic tangent of a real number is upper bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1) | ||
Theorem | tanhbnd 16209 | The hyperbolic tangent of a real number is bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1)) | ||
Theorem | efeul 16210 | Eulerian representation of the complex exponential. (Suggested by Jeff Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006.) |
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((exp‘(ℜ‘𝐴)) · ((cos‘(ℑ‘𝐴)) + (i · (sin‘(ℑ‘𝐴)))))) | ||
Theorem | efieq 16211 | The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵)))) | ||
Theorem | sinadd 16212 | Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵)))) | ||
Theorem | cosadd 16213 | Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) | ||
Theorem | tanaddlem 16214 | A useful intermediate step in tanadd 16215 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((cos‘(𝐴 + 𝐵)) ≠ 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) ≠ 1)) | ||
Theorem | tanadd 16215 | Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵))))) | ||
Theorem | sinsub 16216 | Sine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 − 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵)))) | ||
Theorem | cossub 16217 | Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 − 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) | ||
Theorem | addsin 16218 | Sum of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) + (sin‘𝐵)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
Theorem | subsin 16219 | Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) − (sin‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
Theorem | sinmul 16220 | Product of sines can be rewritten as half the difference of certain cosines. This follows from cosadd 16213 and cossub 16217. (Contributed by David A. Wheeler, 26-May-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2)) | ||
Theorem | cosmul 16221 | Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd 16213 and cossub 16217. (Contributed by David A. Wheeler, 26-May-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) = (((cos‘(𝐴 − 𝐵)) + (cos‘(𝐴 + 𝐵))) / 2)) | ||
Theorem | addcos 16222 | Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) + (cos‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
Theorem | subcos 16223 | Difference of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) − (cos‘𝐴)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
Theorem | sincossq 16224 | Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.) |
⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | ||
Theorem | sin2t 16225 | Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴)))) | ||
Theorem | cos2t 16226 | Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) | ||
Theorem | cos2tsin 16227 | Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) | ||
Theorem | sinbnd 16228 | The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) | ||
Theorem | cosbnd 16229 | The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
⊢ (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1)) | ||
Theorem | sinbnd2 16230 | The sine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ (-1[,]1)) | ||
Theorem | cosbnd2 16231 | The cosine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ (-1[,]1)) | ||
Theorem | ef01bndlem 16232* | Lemma for sin01bnd 16233 and cos01bnd 16234. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)) < ((𝐴↑4) / 6)) | ||
Theorem | sin01bnd 16233 | Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)) | ||
Theorem | cos01bnd 16234 | Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))) | ||
Theorem | cos1bnd 16235 | Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) | ||
Theorem | cos2bnd 16236 | Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (-(7 / 9) < (cos‘2) ∧ (cos‘2) < -(1 / 9)) | ||
Theorem | sinltx 16237 | The sine of a positive real number is less than its argument. (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ (𝐴 ∈ ℝ+ → (sin‘𝐴) < 𝐴) | ||
Theorem | sin01gt0 16238 | The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.) |
⊢ (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴)) | ||
Theorem | cos01gt0 16239 | The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴)) | ||
Theorem | sin02gt0 16240 | The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴)) | ||
Theorem | sincos1sgn 16241 | The signs of the sine and cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (0 < (sin‘1) ∧ 0 < (cos‘1)) | ||
Theorem | sincos2sgn 16242 | The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) | ||
Theorem | sin4lt0 16243 | The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (sin‘4) < 0 | ||
Theorem | absefi 16244 | The absolute value of the exponential of an imaginary number is one. Equation 48 of [Rudin] p. 167. (Contributed by Jason Orendorff, 9-Feb-2007.) |
⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1) | ||
Theorem | absef 16245 | The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.) |
⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴))) | ||
Theorem | absefib 16246 | A complex number is real iff the exponential of its product with i has absolute value one. (Contributed by NM, 21-Aug-2008.) |
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1)) | ||
Theorem | efieq1re 16247 | A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ) | ||
Theorem | demoivre 16248 | De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 16249 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | ||
Theorem | demoivreALT 16249 | Alternate proof of demoivre 16248. It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | ||
Syntax | ctau 16250 | Extend class notation to include the constant tau, τ = 6.28318.... |
class τ | ||
Definition | df-tau 16251 | Define the circle constant tau, τ = 6.28318..., which is the smallest positive real number whose cosine is one. Various notations have been used or proposed for this number including τ, a three-legged variant of π, or 2π. Note the difference between this constant τ and the formula variable 𝜏. Following our convention, the constant is displayed in upright font while the variable is in italic font; furthermore, the colors are different. (Contributed by Jim Kingdon, 9-Apr-2018.) (Revised by AV, 1-Oct-2020.) |
⊢ τ = inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) | ||
Theorem | eirrlem 16252* | Lemma for eirr 16253. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) & ⊢ (𝜑 → 𝑃 ∈ ℤ) & ⊢ (𝜑 → 𝑄 ∈ ℕ) & ⊢ (𝜑 → e = (𝑃 / 𝑄)) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | eirr 16253 | e is irrational. (Contributed by Paul Chapman, 9-Feb-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.) |
⊢ e ∉ ℚ | ||
Theorem | egt2lt3 16254 | Euler's constant e = 2.71828... is strictly bounded below by 2 and above by 3. (Contributed by NM, 28-Nov-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ (2 < e ∧ e < 3) | ||
Theorem | epos 16255 | Euler's constant e is greater than 0. (Contributed by Jeff Hankins, 22-Nov-2008.) |
⊢ 0 < e | ||
Theorem | epr 16256 | Euler's constant e is a positive real. (Contributed by Jeff Hankins, 22-Nov-2008.) |
⊢ e ∈ ℝ+ | ||
Theorem | ene0 16257 | e is not 0. (Contributed by David A. Wheeler, 17-Oct-2017.) |
⊢ e ≠ 0 | ||
Theorem | ene1 16258 | e is not 1. (Contributed by David A. Wheeler, 17-Oct-2017.) |
⊢ e ≠ 1 | ||
Theorem | xpnnen 16259 | The Cartesian product of the set of positive integers with itself is equinumerous to the set of positive integers. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
⊢ (ℕ × ℕ) ≈ ℕ | ||
Theorem | znnen 16260 | The set of integers and the set of positive integers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.) |
⊢ ℤ ≈ ℕ | ||
Theorem | qnnen 16261 | The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set (ℤ × ℕ) is numerable. Exercise 2 of [Enderton] p. 133. For purposes of the Metamath 100 list, we are considering Mario Carneiro's revision as the date this proof was completed. This is Metamath 100 proof #3. (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 3-Mar-2013.) |
⊢ ℚ ≈ ℕ | ||
Theorem | rpnnen2lem1 16262* | Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝐴)‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) | ||
Theorem | rpnnen2lem2 16263* | Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) | ||
Theorem | rpnnen2lem3 16264* | Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) | ||
Theorem | rpnnen2lem4 16265* | Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 31-Aug-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘))) | ||
Theorem | rpnnen2lem5 16266* | Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) | ||
Theorem | rpnnen2lem6 16267* | Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐴)‘𝑘) ∈ ℝ) | ||
Theorem | rpnnen2lem7 16268* | Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐵)‘𝑘)) | ||
Theorem | rpnnen2lem8 16269* | Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹‘𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑀 − 1))((𝐹‘𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐴)‘𝑘))) | ||
Theorem | rpnnen2lem9 16270* | Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3))))) | ||
Theorem | rpnnen2lem10 16271* | Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) & ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝐵 ⊆ ℕ) & ⊢ (𝜑 → 𝑚 ∈ (𝐴 ∖ 𝐵)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵))) & ⊢ (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝐵)‘𝑘)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘)) | ||
Theorem | rpnnen2lem11 16272* | Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) & ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝐵 ⊆ ℕ) & ⊢ (𝜑 → 𝑚 ∈ (𝐴 ∖ 𝐵)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵))) & ⊢ (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝐵)‘𝑘)) ⇒ ⊢ (𝜑 → ¬ 𝜓) | ||
Theorem | rpnnen2lem12 16273* | Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ 𝒫 ℕ ≼ (0[,]1) | ||
Theorem | rpnnen2 16274 |
The other half of rpnnen 16275, where we show an injection from sets of
positive integers to real numbers. The obvious choice for this is
binary expansion, but it has the unfortunate property that it does not
produce an injection on numbers which end with all 0's or all 1's (the
more well-known decimal version of this is 0.999... 15929). Instead, we
opt for a ternary expansion, which produces (a scaled version of) the
Cantor set. Since the Cantor set is riddled with gaps, we can show that
any two sequences that are not equal must differ somewhere, and when
they do, they are placed a finite distance apart, thus ensuring that the
map is injective.
Our map assigns to each subset 𝐴 of the positive integers the number Σ𝑘 ∈ 𝐴(3↑-𝑘) = Σ𝑘 ∈ ℕ((𝐹‘𝐴)‘𝑘), where ((𝐹‘𝐴)‘𝑘) = if(𝑘 ∈ 𝐴, (3↑-𝑘), 0)) (rpnnen2lem1 16262). This is an infinite sum of real numbers (rpnnen2lem2 16263), and since 𝐴 ⊆ 𝐵 implies (𝐹‘𝐴) ≤ (𝐹‘𝐵) (rpnnen2lem4 16265) and (𝐹‘ℕ) converges to 1 / 2 (rpnnen2lem3 16264) by geoisum1 15927, the sum is convergent to some real (rpnnen2lem5 16266 and rpnnen2lem6 16267) by the comparison test for convergence cvgcmp 15864. The comparison test also tells us that 𝐴 ⊆ 𝐵 implies Σ(𝐹‘𝐴) ≤ Σ(𝐹‘𝐵) (rpnnen2lem7 16268). Putting it all together, if we have two sets 𝑥 ≠ 𝑦, there must differ somewhere, and so there must be an 𝑚 such that ∀𝑛 < 𝑚(𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝑦) but 𝑚 ∈ (𝑥 ∖ 𝑦) or vice versa. In this case, we split off the first 𝑚 − 1 terms (rpnnen2lem8 16269) and cancel them (rpnnen2lem10 16271), since these are the same for both sets. For the remaining terms, we use the subset property to establish that Σ(𝐹‘𝑦) ≤ Σ(𝐹‘(ℕ ∖ {𝑚})) and Σ(𝐹‘{𝑚}) ≤ Σ(𝐹‘𝑥) (where these sums are only over (ℤ≥‘𝑚)), and since Σ(𝐹‘(ℕ ∖ {𝑚})) = (3↑-𝑚) / 2 (rpnnen2lem9 16270) and Σ(𝐹‘{𝑚}) = (3↑-𝑚), we establish that Σ(𝐹‘𝑦) < Σ(𝐹‘𝑥) (rpnnen2lem11 16272) so that they must be different. By contraposition (rpnnen2lem12 16273), we find that this map is an injection. (Contributed by Mario Carneiro, 13-May-2013.) (Proof shortened by Mario Carneiro, 30-Apr-2014.) (Revised by NM, 17-Aug-2021.) |
⊢ 𝒫 ℕ ≼ (0[,]1) | ||
Theorem | rpnnen 16275 | The cardinality of the continuum is the same as the powerset of ω. This is a stronger statement than ruc 16291, which only asserts that ℝ is uncountable, i.e. has a cardinality larger than ω. The main proof is in two parts, rpnnen1 13048 and rpnnen2 16274, each showing an injection in one direction, and this last part uses sbth 9159 to prove that the sets are equinumerous. By constructing explicit injections, we avoid the use of AC. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ ℝ ≈ 𝒫 ℕ | ||
Theorem | rexpen 16276 | The real numbers are equinumerous to their own Cartesian product, even though it is not necessarily true that ℝ is well-orderable (so we cannot use infxpidm2 10086 directly). (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.) |
⊢ (ℝ × ℝ) ≈ ℝ | ||
Theorem | cpnnen 16277 | The complex numbers are equinumerous to the powerset of the positive integers. (Contributed by Mario Carneiro, 16-Jun-2013.) |
⊢ ℂ ≈ 𝒫 ℕ | ||
Theorem | rucALT 16278 | Alternate proof of ruc 16291. This proof is a simple corollary of rpnnen 16275, which determines the exact cardinality of the reals. For an alternate proof discussed at mmcomplex.html#uncountable 16275, see ruc 16291. (Contributed by NM, 13-Oct-2004.) (Revised by Mario Carneiro, 13-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ℕ ≺ ℝ | ||
Theorem | ruclem1 16279* | Lemma for ruc 16291 (the reals are uncountable). Substitutions for the function 𝐷. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Fan Zheng, 6-Jun-2016.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ 𝑋 = (1st ‘(〈𝐴, 𝐵〉𝐷𝑀)) & ⊢ 𝑌 = (2nd ‘(〈𝐴, 𝐵〉𝐷𝑀)) ⇒ ⊢ (𝜑 → ((〈𝐴, 𝐵〉𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))) | ||
Theorem | ruclem2 16280* | Lemma for ruc 16291. Ordering property for the input to 𝐷. (Contributed by Mario Carneiro, 28-May-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ 𝑋 = (1st ‘(〈𝐴, 𝐵〉𝐷𝑀)) & ⊢ 𝑌 = (2nd ‘(〈𝐴, 𝐵〉𝐷𝑀)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝑋 ∧ 𝑋 < 𝑌 ∧ 𝑌 ≤ 𝐵)) | ||
Theorem | ruclem3 16281* | Lemma for ruc 16291. The constructed interval [𝑋, 𝑌] always excludes 𝑀. (Contributed by Mario Carneiro, 28-May-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ 𝑋 = (1st ‘(〈𝐴, 𝐵〉𝐷𝑀)) & ⊢ 𝑌 = (2nd ‘(〈𝐴, 𝐵〉𝐷𝑀)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝑀 < 𝑋 ∨ 𝑌 < 𝑀)) | ||
Theorem | ruclem4 16282* | Lemma for ruc 16291. Initial value of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) ⇒ ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) | ||
Theorem | ruclem6 16283* | Lemma for ruc 16291. Domain and codomain of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) ⇒ ⊢ (𝜑 → 𝐺:ℕ0⟶(ℝ × ℝ)) | ||
Theorem | ruclem7 16284* | Lemma for ruc 16291. Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺‘𝑁)𝐷(𝐹‘(𝑁 + 1)))) | ||
Theorem | ruclem8 16285* | Lemma for ruc 16291. The intervals of the 𝐺 sequence are all nonempty. (Contributed by Mario Carneiro, 28-May-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (1st ‘(𝐺‘𝑁)) < (2nd ‘(𝐺‘𝑁))) | ||
Theorem | ruclem9 16286* | Lemma for ruc 16291. The first components of the 𝐺 sequence are increasing, and the second components are decreasing. (Contributed by Mario Carneiro, 28-May-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → ((1st ‘(𝐺‘𝑀)) ≤ (1st ‘(𝐺‘𝑁)) ∧ (2nd ‘(𝐺‘𝑁)) ≤ (2nd ‘(𝐺‘𝑀)))) | ||
Theorem | ruclem10 16287* | Lemma for ruc 16291. Every first component of the 𝐺 sequence is less than every second component. That is, the sequences form a chain a1 < a2 <... < b2 < b1, where ai are the first components and bi are the second components. (Contributed by Mario Carneiro, 28-May-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) < (2nd ‘(𝐺‘𝑁))) | ||
Theorem | ruclem11 16288* | Lemma for ruc 16291. Closure lemmas for supremum. (Contributed by Mario Carneiro, 28-May-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) ⇒ ⊢ (𝜑 → (ran (1st ∘ 𝐺) ⊆ ℝ ∧ ran (1st ∘ 𝐺) ≠ ∅ ∧ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1)) | ||
Theorem | ruclem12 16289* | Lemma for ruc 16291. The supremum of the increasing sequence 1st ∘ 𝐺 is a real number that is not in the range of 𝐹. (Contributed by Mario Carneiro, 28-May-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) & ⊢ 𝑆 = sup(ran (1st ∘ 𝐺), ℝ, < ) ⇒ ⊢ (𝜑 → 𝑆 ∈ (ℝ ∖ ran 𝐹)) | ||
Theorem | ruclem13 16290 | Lemma for ruc 16291. There is no function that maps ℕ onto ℝ. (Use nex 1798 if you want this in the form ¬ ∃𝑓𝑓:ℕ–onto→ℝ.) (Contributed by NM, 14-Oct-2004.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
⊢ ¬ 𝐹:ℕ–onto→ℝ | ||
Theorem | ruc 16291 | The set of positive integers is strictly dominated by the set of real numbers, i.e. the real numbers are uncountable. The proof consists of lemmas ruclem1 16279 through ruclem13 16290 and this final piece. Our proof is based on the proof of Theorem 5.18 of [Truss] p. 114. See ruclem13 16290 for the function existence version of this theorem. For an informal discussion of this proof, see mmcomplex.html#uncountable 16290. For an alternate proof see rucALT 16278. This is Metamath 100 proof #22. (Contributed by NM, 13-Oct-2004.) |
⊢ ℕ ≺ ℝ | ||
Theorem | resdomq 16292 | The set of rationals is strictly less equinumerous than the set of reals (ℝ strictly dominates ℚ). (Contributed by NM, 18-Dec-2004.) |
⊢ ℚ ≺ ℝ | ||
Theorem | aleph1re 16293 | There are at least aleph-one real numbers. (Contributed by NM, 2-Feb-2005.) |
⊢ (ℵ‘1o) ≼ ℝ | ||
Theorem | aleph1irr 16294 | There are at least aleph-one irrationals. (Contributed by NM, 2-Feb-2005.) |
⊢ (ℵ‘1o) ≼ (ℝ ∖ ℚ) | ||
Theorem | cnso 16295 | The complex numbers can be linearly ordered. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ ∃𝑥 𝑥 Or ℂ | ||
Here we introduce elementary number theory, in particular the elementary properties of divisibility and elementary prime number theory. | ||
Theorem | sqrt2irrlem 16296 | Lemma for sqrt2irr 16297. This is the core of the proof: if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). This is Metamath 100 proof #1. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) (Proof shortened by JV, 4-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) ⇒ ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) | ||
Theorem | sqrt2irr 16297 | The square root of 2 is irrational. See zsqrtelqelz 16805 for a generalization to all non-square integers. The proof's core is proven in sqrt2irrlem 16296, which shows that if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd. An older version of this proof was included in The Seventeen Provers of the World compiled by Freek Wiedijk. It is also the first of the "top 100" mathematical theorems whose formalization is tracked by Freek Wiedijk on his Formalizing 100 Theorems page at http://www.cs.ru.nl/~freek/100/ 16296. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
⊢ (√‘2) ∉ ℚ | ||
Theorem | sqrt2re 16298 | The square root of 2 exists and is a real number. (Contributed by NM, 3-Dec-2004.) |
⊢ (√‘2) ∈ ℝ | ||
Theorem | sqrt2irr0 16299 | The square root of 2 is an irrational number. (Contributed by AV, 23-Dec-2022.) |
⊢ (√‘2) ∈ (ℝ ∖ ℚ) | ||
Theorem | nthruc 16300 | The sequence ℕ, ℤ, ℚ, ℝ, and ℂ forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to ℤ but not ℕ, one-half belongs to ℚ but not ℤ, the square root of 2 belongs to ℝ but not ℚ, and finally that the imaginary number i belongs to ℂ but not ℝ. See nthruz 16301 for a further refinement. (Contributed by NM, 12-Jan-2002.) |
⊢ ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |