Home | Metamath
Proof Explorer Theorem List (p. 163 of 458) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28800) |
Hilbert Space Explorer
(28801-30323) |
Users' Mathboxes
(30324-45724) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | coprimeprodsq2 16201 | If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) | ||
Theorem | oddprm 16202 | A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ) | ||
Theorem | nnoddn2prm 16203 | A prime not equal to 2 is an odd positive integer. (Contributed by AV, 28-Jun-2021.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) | ||
Theorem | oddn2prm 16204 | A prime not equal to 2 is odd. (Contributed by AV, 28-Jun-2021.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁) | ||
Theorem | nnoddn2prmb 16205 | A number is a prime number not equal to 2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁)) | ||
Theorem | prm23lt5 16206 | A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3)) | ||
Theorem | prm23ge5 16207 | A prime is either 2 or 3 or greater than or equal to 5. (Contributed by AV, 5-Jul-2021.) |
⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) | ||
Theorem | pythagtriplem1 16208* | Lemma for pythagtrip 16226. Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) | ||
Theorem | pythagtriplem2 16209* | Lemma for pythagtrip 16226. Prove the full version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))) | ||
Theorem | pythagtriplem3 16210 | Lemma for pythagtrip 16226. Show that 𝐶 and 𝐵 are relatively prime under some conditions. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1) | ||
Theorem | pythagtriplem4 16211 | Lemma for pythagtrip 16226. Show that 𝐶 − 𝐵 and 𝐶 + 𝐵 are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1) | ||
Theorem | pythagtriplem10 16212 | Lemma for pythagtrip 16226. Show that 𝐶 − 𝐵 is positive. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 − 𝐵)) | ||
Theorem | pythagtriplem6 16213 | Lemma for pythagtrip 16226. Calculate (√‘(𝐶 − 𝐵)). (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) = ((𝐶 − 𝐵) gcd 𝐴)) | ||
Theorem | pythagtriplem7 16214 | Lemma for pythagtrip 16226. Calculate (√‘(𝐶 + 𝐵)). (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) = ((𝐶 + 𝐵) gcd 𝐴)) | ||
Theorem | pythagtriplem8 16215 | Lemma for pythagtrip 16226. Show that (√‘(𝐶 − 𝐵)) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℕ) | ||
Theorem | pythagtriplem9 16216 | Lemma for pythagtrip 16226. Show that (√‘(𝐶 + 𝐵)) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℕ) | ||
Theorem | pythagtriplem11 16217 | Lemma for pythagtrip 16226. Show that 𝑀 (which will eventually be closely related to the 𝑚 in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 ∈ ℕ) | ||
Theorem | pythagtriplem12 16218 | Lemma for pythagtrip 16226. Calculate the square of 𝑀. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀↑2) = ((𝐶 + 𝐴) / 2)) | ||
Theorem | pythagtriplem13 16219 | Lemma for pythagtrip 16226. Show that 𝑁 (which will eventually be closely related to the 𝑛 in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 ∈ ℕ) | ||
Theorem | pythagtriplem14 16220 | Lemma for pythagtrip 16226. Calculate the square of 𝑁. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶 − 𝐴) / 2)) | ||
Theorem | pythagtriplem15 16221 | Lemma for pythagtrip 16226. Show the relationship between 𝑀, 𝑁, and 𝐴. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = ((𝑀↑2) − (𝑁↑2))) | ||
Theorem | pythagtriplem16 16222 | Lemma for pythagtrip 16226. Show the relationship between 𝑀, 𝑁, and 𝐵. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁))) | ||
Theorem | pythagtriplem17 16223 | Lemma for pythagtrip 16226. Show the relationship between 𝑀, 𝑁, and 𝐶. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 = ((𝑀↑2) + (𝑁↑2))) | ||
Theorem | pythagtriplem18 16224* | Lemma for pythagtrip 16226. Wrap the previous 𝑀 and 𝑁 up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2)))) | ||
Theorem | pythagtriplem19 16225* | Lemma for pythagtrip 16226. Introduce 𝑘 and remove the relative primality requirement. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) | ||
Theorem | pythagtrip 16226* | Parameterize the Pythagorean triples. If 𝐴, 𝐵, and 𝐶 are naturals, then they obey the Pythagorean triple formula iff they are parameterized by three naturals. This proof follows the Isabelle proof at http://afp.sourceforge.net/entries/Fermat3_4.shtml. This is Metamath 100 proof #23. (Contributed by Scott Fenton, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))) | ||
Theorem | iserodd 16227* | Collect the odd terms in a sequence. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 10-Jul-2022.) |
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ) & ⊢ (𝑛 = ((2 · 𝑘) + 1) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (seq0( + , (𝑘 ∈ ℕ0 ↦ 𝐶)) ⇝ 𝐴 ↔ seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))) ⇝ 𝐴)) | ||
Syntax | cpc 16228 | Extend class notation with the prime count function. |
class pCnt | ||
Definition | df-pc 16229* | Define the prime count function, which returns the largest exponent of a given prime (or other positive integer) that divides the number. For rational numbers, it returns negative values according to the power of a prime in the denominator. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) | ||
Theorem | pclem 16230* | - Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | ||
Theorem | pcprecl 16231* | Closure of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} & ⊢ 𝑆 = sup(𝐴, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) | ||
Theorem | pcprendvds 16232* | Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} & ⊢ 𝑆 = sup(𝐴, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) | ||
Theorem | pcprendvds2 16233* | Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} & ⊢ 𝑆 = sup(𝐴, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑆))) | ||
Theorem | pcpre1 16234* | Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.) |
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} & ⊢ 𝑆 = sup(𝐴, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 = 0) | ||
Theorem | pcpremul 16235* | Multiplicative property of the prime count pre-function. Note that the primality of 𝑃 is essential for this property; (4 pCnt 2) = 0 but (4 pCnt (2 · 2)) = 1 ≠ 2 · (4 pCnt 2) = 0. Since this is needed to show uniqueness for the real prime count function (over ℚ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑀}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < ) & ⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) = 𝑈) | ||
Theorem | pcval 16236* | The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.) |
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) | ||
Theorem | pceulem 16237* | Lemma for pceu 16238. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) & ⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) & ⊢ 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ≠ 0) & ⊢ (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) & ⊢ (𝜑 → 𝑁 = (𝑥 / 𝑦)) & ⊢ (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ)) & ⊢ (𝜑 → 𝑁 = (𝑠 / 𝑡)) ⇒ ⊢ (𝜑 → (𝑆 − 𝑇) = (𝑈 − 𝑉)) | ||
Theorem | pceu 16238* | Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) | ||
Theorem | pczpre 16239* | Connect the prime count pre-function to the actual prime count function, when restricted to the integers. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = 𝑆) | ||
Theorem | pczcl 16240 | Closure of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℕ0) | ||
Theorem | pccl 16241 | Closure of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 pCnt 𝑁) ∈ ℕ0) | ||
Theorem | pccld 16242 | Closure of the prime power function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0) | ||
Theorem | pcmul 16243 | Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) | ||
Theorem | pcdiv 16244 | Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))) | ||
Theorem | pcqmul 16245 | Multiplication property of the prime power function. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) | ||
Theorem | pc0 16246 | The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞) | ||
Theorem | pc1 16247 | Value of the prime count function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) | ||
Theorem | pcqcl 16248 | Closure of the general prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ) | ||
Theorem | pcqdiv 16249 | Division property of the prime power function. (Contributed by Mario Carneiro, 10-Aug-2015.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))) | ||
Theorem | pcrec 16250 | Prime power of a reciprocal. (Contributed by Mario Carneiro, 10-Aug-2015.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = -(𝑃 pCnt 𝐴)) | ||
Theorem | pcexp 16251 | Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))) | ||
Theorem | pcxcl 16252 | Extended real closure of the general prime count function. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑃 pCnt 𝑁) ∈ ℝ*) | ||
Theorem | pcge0 16253 | The prime count of an integer is greater than or equal to zero. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝑃 pCnt 𝑁)) | ||
Theorem | pczdvds 16254 | Defining property of the prime count function. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) | ||
Theorem | pcdvds 16255 | Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) | ||
Theorem | pczndvds 16256 | Defining property of the prime count function. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁) | ||
Theorem | pcndvds 16257 | Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁) | ||
Theorem | pczndvds2 16258 | The remainder after dividing out all factors of 𝑃 is not divisible by 𝑃. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) | ||
Theorem | pcndvds2 16259 | The remainder after dividing out all factors of 𝑃 is not divisible by 𝑃. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) | ||
Theorem | pcdvdsb 16260 | 𝑃↑𝐴 divides 𝑁 if and only if 𝐴 is at most the count of 𝑃. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃↑𝐴) ∥ 𝑁)) | ||
Theorem | pcelnn 16261 | There are a positive number of powers of a prime 𝑃 in 𝑁 iff 𝑃 divides 𝑁. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃 ∥ 𝑁)) | ||
Theorem | pceq0 16262 | There are zero powers of a prime 𝑃 in 𝑁 iff 𝑃 does not divide 𝑁. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) = 0 ↔ ¬ 𝑃 ∥ 𝑁)) | ||
Theorem | pcidlem 16263 | The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) | ||
Theorem | pcid 16264 | The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) | ||
Theorem | pcneg 16265 | The prime count of a negative number. (Contributed by Mario Carneiro, 13-Mar-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴)) | ||
Theorem | pcabs 16266 | The prime count of an absolute value. (Contributed by Mario Carneiro, 13-Mar-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴)) | ||
Theorem | pcdvdstr 16267 | The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) | ||
Theorem | pcgcd1 16268 | The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴)) | ||
Theorem | pcgcd 16269 | The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵))) | ||
Theorem | pc2dvds 16270* | A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))) | ||
Theorem | pc11 16271* | The prime count function, viewed as a function from ℕ to (ℕ ↑m ℙ), is one-to-one. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))) | ||
Theorem | pcz 16272* | The prime count function can be used as an indicator that a given rational number is an integer. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴))) | ||
Theorem | pcprmpw2 16273* | Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) | ||
Theorem | pcprmpw 16274* | Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) | ||
Theorem | dvdsprmpweq 16275* | If a positive integer divides a prime power, it is a prime power. (Contributed by AV, 25-Jul-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) | ||
Theorem | dvdsprmpweqnn 16276* | If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) | ||
Theorem | dvdsprmpweqle 16277* | If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 (𝑛 ≤ 𝑁 ∧ 𝐴 = (𝑃↑𝑛)))) | ||
Theorem | difsqpwdvds 16278 | If the difference of two squares is a power of a prime, the prime divides twice the second squared number. (Contributed by AV, 13-Aug-2021.) |
⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶↑𝐷) = ((𝐴↑2) − (𝐵↑2)) → 𝐶 ∥ (2 · 𝐵))) | ||
Theorem | pcaddlem 16279 | Lemma for pcadd 16280. The original numbers 𝐴 and 𝐵 have been decomposed using the prime count function as (𝑃↑𝑀) · (𝑅 / 𝑆) where 𝑅, 𝑆 are both not divisible by 𝑃 and 𝑀 = (𝑃 pCnt 𝐴), and similarly for 𝐵. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 = ((𝑃↑𝑀) · (𝑅 / 𝑆))) & ⊢ (𝜑 → 𝐵 = ((𝑃↑𝑁) · (𝑇 / 𝑈))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (𝑅 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝑅)) & ⊢ (𝜑 → (𝑆 ∈ ℕ ∧ ¬ 𝑃 ∥ 𝑆)) & ⊢ (𝜑 → (𝑇 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝑇)) & ⊢ (𝜑 → (𝑈 ∈ ℕ ∧ ¬ 𝑃 ∥ 𝑈)) ⇒ ⊢ (𝜑 → 𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵))) | ||
Theorem | pcadd 16280 | An inequality for the prime count of a sum. This is the source of the ultrametric inequality for the p-adic metric. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) ⇒ ⊢ (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))) | ||
Theorem | pcadd2 16281 | The inequality of pcadd 16280 becomes an equality when one of the factors has prime count strictly less than the other. (Contributed by Mario Carneiro, 16-Jan-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → (𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵)) ⇒ ⊢ (𝜑 → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵))) | ||
Theorem | pcmptcl 16282 | Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) | ||
Theorem | pcmpt 16283* | Construct a function with given prime count characteristics. (Contributed by Mario Carneiro, 12-Mar-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝑛 = 𝑃 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃 ≤ 𝑁, 𝐵, 0)) | ||
Theorem | pcmpt2 16284* | Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝑛 = 𝑃 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑁)) ⇒ ⊢ (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0)) | ||
Theorem | pcmptdvds 16285 | The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑁)) ⇒ ⊢ (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀)) | ||
Theorem | pcprod 16286* | The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁) | ||
Theorem | sumhash 16287* | The sum of 1 over a set is the size of the set. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 20-May-2014.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 1, 0) = (♯‘𝐴)) | ||
Theorem | fldivp1 16288 | The difference between the floors of adjacent fractions is either 1 or 0. (Contributed by Mario Carneiro, 8-Mar-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0)) | ||
Theorem | pcfaclem 16289 | Lemma for pcfac 16290. (Contributed by Mario Carneiro, 20-May-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃↑𝑀))) = 0) | ||
Theorem | pcfac 16290* | Calculate the prime count of a factorial. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃↑𝑘)))) | ||
Theorem | pcbc 16291* | Calculate the prime count of a binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃↑𝑘))) − ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))))) | ||
Theorem | qexpz 16292 | If a power of a rational number is an integer, then the number is an integer. In other words, all n-th roots are irrational unless they are integers (so that the original number is an n-th power). (Contributed by Mario Carneiro, 10-Aug-2015.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑁) ∈ ℤ) → 𝐴 ∈ ℤ) | ||
Theorem | expnprm 16293 | A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is irrational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → ¬ (𝐴↑𝑁) ∈ ℙ) | ||
Theorem | oddprmdvds 16294* | Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021.) |
⊢ ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝 ∥ 𝐾) | ||
Theorem | prmpwdvds 16295 | A relation involving divisibility by a prime power. (Contributed by Mario Carneiro, 2-Mar-2014.) |
⊢ (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ (𝐷 ∥ (𝐾 · (𝑃↑𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1))))) → (𝑃↑𝑁) ∥ 𝐷) | ||
Theorem | pockthlem 16296 | Lemma for pockthg 16297. (Contributed by Mario Carneiro, 2-Mar-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 < 𝐴) & ⊢ (𝜑 → 𝑁 = ((𝐴 · 𝐵) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → 𝑄 ∈ ℙ) & ⊢ (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = 1) & ⊢ (𝜑 → (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) = 1) ⇒ ⊢ (𝜑 → (𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1))) | ||
Theorem | pockthg 16297* | The generalized Pocklington's theorem. If 𝑁 − 1 = 𝐴 · 𝐵 where 𝐵 < 𝐴, then 𝑁 is prime if and only if for every prime factor 𝑝 of 𝐴, there is an 𝑥 such that 𝑥↑(𝑁 − 1) = 1( mod 𝑁) and gcd (𝑥↑((𝑁 − 1) / 𝑝) − 1, 𝑁) = 1. (Contributed by Mario Carneiro, 2-Mar-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 < 𝐴) & ⊢ (𝜑 → 𝑁 = ((𝐴 · 𝐵) + 1)) & ⊢ (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ 𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℙ) | ||
Theorem | pockthi 16298 | Pocklington's theorem, which gives a sufficient criterion for a number 𝑁 to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg 16297 for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014.) |
⊢ 𝑃 ∈ ℙ & ⊢ 𝐺 ∈ ℕ & ⊢ 𝑀 = (𝐺 · 𝑃) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝐷 ∈ ℕ & ⊢ 𝐸 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝑀 = (𝐷 · (𝑃↑𝐸)) & ⊢ 𝐷 < (𝑃↑𝐸) & ⊢ ((𝐴↑𝑀) mod 𝑁) = (1 mod 𝑁) & ⊢ (((𝐴↑𝐺) − 1) gcd 𝑁) = 1 ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | unbenlem 16299* | Lemma for unben 16300. (Contributed by NM, 5-May-2005.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → 𝐴 ≈ ω) | ||
Theorem | unben 16300* | An unbounded set of positive integers is infinite. (Contributed by NM, 5-May-2005.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → 𝐴 ≈ ℕ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |