HomeHome Metamath Proof Explorer
Theorem List (p. 163 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 16201-16300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsmu01lem 16201* Lemma for smu01 16202 and smu02 16203. (Contributed by Mario Carneiro, 19-Sep-2016.)
(𝜑𝐴 ⊆ ℕ0)    &   (𝜑𝐵 ⊆ ℕ0)    &   ((𝜑 ∧ (𝑘 ∈ ℕ0𝑛 ∈ ℕ0)) → ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))       (𝜑 → (𝐴 smul 𝐵) = ∅)
 
Theoremsmu01 16202 Multiplication of a sequence by 0 on the right. (Contributed by Mario Carneiro, 19-Sep-2016.)
(𝐴 ⊆ ℕ0 → (𝐴 smul ∅) = ∅)
 
Theoremsmu02 16203 Multiplication of a sequence by 0 on the left. (Contributed by Mario Carneiro, 9-Sep-2016.)
(𝐴 ⊆ ℕ0 → (∅ smul 𝐴) = ∅)
 
Theoremsmupval 16204* Rewrite the elements of the partial sum sequence in terms of sequence multiplication. (Contributed by Mario Carneiro, 20-Sep-2016.)
(𝜑𝐴 ⊆ ℕ0)    &   (𝜑𝐵 ⊆ ℕ0)    &   𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (𝑃𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵))
 
Theoremsmup1 16205* Rewrite smupp1 16196 using only smul instead of the internal recursive function 𝑃. (Contributed by Mario Carneiro, 20-Sep-2016.)
(𝜑𝐴 ⊆ ℕ0)    &   (𝜑𝐵 ⊆ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝐴 ∩ (0..^(𝑁 + 1))) smul 𝐵) = (((𝐴 ∩ (0..^𝑁)) smul 𝐵) sadd {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}))
 
Theoremsmueqlem 16206* Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.)
(𝜑𝐴 ⊆ ℕ0)    &   (𝜑𝐵 ⊆ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))    &   𝑄 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ (𝐵 ∩ (0..^𝑁)))})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))       (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
 
Theoremsmueq 16207 Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.)
(𝜑𝐴 ⊆ ℕ0)    &   (𝜑𝐵 ⊆ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
 
Theoremsmumullem 16208 Lemma for smumul 16209. (Contributed by Mario Carneiro, 22-Sep-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵)))
 
Theoremsmumul 16209 For sequences that correspond to valid integers, the sequence multiplication function produces the sequence for the product. This is effectively a proof of the correctness of the multiplication process, implemented in terms of logic gates for df-sad 16167, whose correctness is verified in sadadd 16183.

Outside this range, the sequences cannot be representing integers, but the smul function still "works". This extended function is best interpreted in terms of the ring structure of the 2-adic integers. (Contributed by Mario Carneiro, 22-Sep-2016.)

((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) smul (bits‘𝐵)) = (bits‘(𝐴 · 𝐵)))
 
6.1.7  The greatest common divisor operator
 
Syntaxcgcd 16210 Extend the definition of a class to include the greatest common divisor operator.
class gcd
 
Definitiondf-gcd 16211* Define the gcd operator. For example, (-6 gcd 9) = 3 (ex-gcd 28830). For an alternate definition, based on the definition in [ApostolNT] p. 15, see dfgcd2 16263. (Contributed by Paul Chapman, 21-Mar-2011.)
gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑥𝑛𝑦)}, ℝ, < )))
 
Theoremgcdval 16212* The value of the gcd operator. (𝑀 gcd 𝑁) is the greatest common divisor of 𝑀 and 𝑁. If 𝑀 and 𝑁 are both 0, the result is defined conventionally as 0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )))
 
Theoremgcd0val 16213 The value, by convention, of the gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.)
(0 gcd 0) = 0
 
Theoremgcdn0val 16214* The value of the gcd operator when at least one operand is nonzero. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ))
 
Theoremgcdcllem1 16215* Lemma for gcdn0cl 16218, gcddvds 16219 and dvdslegcd 16220. (Contributed by Paul Chapman, 21-Mar-2011.)
𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛𝐴 𝑧𝑛}       ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
 
Theoremgcdcllem2 16216* Lemma for gcdn0cl 16218, gcddvds 16219 and dvdslegcd 16220. (Contributed by Paul Chapman, 21-Mar-2011.)
𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}    &   𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆)
 
Theoremgcdcllem3 16217* Lemma for gcdn0cl 16218, gcddvds 16219 and dvdslegcd 16220. (Contributed by Paul Chapman, 21-Mar-2011.)
𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}    &   𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}       (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℕ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < ))))
 
Theoremgcdn0cl 16218 Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ∈ ℕ)
 
Theoremgcddvds 16219 The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
 
Theoremdvdslegcd 16220 An integer which divides both operands of the gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁)))
 
Theoremnndvdslegcd 16221 A positive integer which divides both positive operands of the gcd operator is bounded by it. (Contributed by AV, 9-Aug-2020.)
((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁)))
 
Theoremgcdcl 16222 Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
 
Theoremgcdnncl 16223 Closure of the gcd operator. (Contributed by Thierry Arnoux, 2-Feb-2020.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ)
 
Theoremgcdcld 16224 Closure of the gcd operator. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝑀 gcd 𝑁) ∈ ℕ0)
 
Theoremgcd2n0cl 16225 Closure of the gcd operator if the second operand is not 0. (Contributed by AV, 10-Jul-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 gcd 𝑁) ∈ ℕ)
 
Theoremzeqzmulgcd 16226* An integer is the product of an integer and the gcd of it and another integer. (Contributed by AV, 11-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑛 ∈ ℤ 𝐴 = (𝑛 · (𝐴 gcd 𝐵)))
 
Theoremdivgcdz 16227 An integer divided by the gcd of it and a nonzero integer is an integer. (Contributed by AV, 11-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)
 
Theoremgcdf 16228 Domain and codomain of the gcd operator. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 16-Nov-2013.)
gcd :(ℤ × ℤ)⟶ℕ0
 
Theoremgcdcom 16229 The gcd operator is commutative. Theorem 1.4(a) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
 
Theoremgcdcomd 16230 The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
 
Theoremdivgcdnn 16231 A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
 
Theoremdivgcdnnr 16232 A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐵 gcd 𝐴)) ∈ ℕ)
 
Theoremgcdeq0 16233 The gcd of two integers is zero iff they are both zero. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) = 0 ↔ (𝑀 = 0 ∧ 𝑁 = 0)))
 
Theoremgcdn0gt0 16234 The gcd of two integers is positive (nonzero) iff they are not both zero. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ 0 < (𝑀 gcd 𝑁)))
 
Theoremgcd0id 16235 The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))
 
Theoremgcdid0 16236 The gcd of an integer and 0 is the integer's absolute value. Theorem 1.4(d)2 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 31-Mar-2011.)
(𝑁 ∈ ℤ → (𝑁 gcd 0) = (abs‘𝑁))
 
Theoremnn0gcdid0 16237 The gcd of a nonnegative integer with 0 is itself. (Contributed by Paul Chapman, 31-Mar-2011.)
(𝑁 ∈ ℕ0 → (𝑁 gcd 0) = 𝑁)
 
Theoremgcdneg 16238 Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))
 
Theoremneggcd 16239 Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd 𝑁) = (𝑀 gcd 𝑁))
 
Theoremgcdaddmlem 16240 Lemma for gcdaddm 16241. (Contributed by Paul Chapman, 31-Mar-2011.)
𝐾 ∈ ℤ    &   𝑀 ∈ ℤ    &   𝑁 ∈ ℤ       (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))
 
Theoremgcdaddm 16241 Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
 
Theoremgcdadd 16242 The GCD of two numbers is the same as the GCD of the left and their sum. (Contributed by Scott Fenton, 20-Apr-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + 𝑀)))
 
Theoremgcdid 16243 The gcd of a number and itself is its absolute value. (Contributed by Paul Chapman, 31-Mar-2011.)
(𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁))
 
Theoremgcd1 16244 The gcd of a number with 1 is 1. Theorem 1.4(d)1 in [ApostolNT] p. 16. (Contributed by Mario Carneiro, 19-Feb-2014.)
(𝑀 ∈ ℤ → (𝑀 gcd 1) = 1)
 
Theoremgcdabs1 16245 gcd of the absolute value of the first operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘𝑁) gcd 𝑀) = (𝑁 gcd 𝑀))
 
Theoremgcdabs2 16246 gcd of the absolute value of the second operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd (abs‘𝑀)) = (𝑁 gcd 𝑀))
 
Theoremgcdabs 16247 The gcd of two integers is the same as that of their absolute values. (Contributed by Paul Chapman, 31-Mar-2011.) (Proof shortened by SN, 15-Sep-2024.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
 
TheoremgcdabsOLD 16248 Obsolete version of gcdabs 16247 as of 15-Sep-2024. (Contributed by Paul Chapman, 31-Mar-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
 
Theoremmodgcd 16249 The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁))
 
Theorem1gcd 16250 The GCD of one and an integer is one. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝑀 ∈ ℤ → (1 gcd 𝑀) = 1)
 
Theoremgcdmultipled 16251 The greatest common divisor of a nonnegative integer 𝑀 and a multiple of it is 𝑀 itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝑀 gcd (𝑁 · 𝑀)) = 𝑀)
 
Theoremgcdmultiplez 16252 The GCD of a multiple of an integer is the integer itself. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by AV, 12-Jan-2023.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
 
Theoremgcdmultiple 16253 The GCD of a multiple of a positive integer is the positive integer itself. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by AV, 12-Jan-2023.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
 
Theoremdvdsgcdidd 16254 The greatest common divisor of a positive integer and another integer it divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑀𝑁)       (𝜑 → (𝑀 gcd 𝑁) = 𝑀)
 
Theorem6gcd4e2 16255 The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.)
(6 gcd 4) = 2
 
6.1.8  Bézout's identity
 
Theorembezoutlem1 16256* Lemma for bezout 16260. (Contributed by Mario Carneiro, 15-Mar-2014.)
𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)       (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
 
Theorembezoutlem2 16257* Lemma for bezout 16260. (Contributed by Mario Carneiro, 15-Mar-2014.) ( Revised by AV, 30-Sep-2020.)
𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   𝐺 = inf(𝑀, ℝ, < )    &   (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))       (𝜑𝐺𝑀)
 
Theorembezoutlem3 16258* Lemma for bezout 16260. (Contributed by Mario Carneiro, 22-Feb-2014.) ( Revised by AV, 30-Sep-2020.)
𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   𝐺 = inf(𝑀, ℝ, < )    &   (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))       (𝜑 → (𝐶𝑀𝐺𝐶))
 
Theorembezoutlem4 16259* Lemma for bezout 16260. (Contributed by Mario Carneiro, 22-Feb-2014.)
𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   𝐺 = inf(𝑀, ℝ, < )    &   (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))       (𝜑 → (𝐴 gcd 𝐵) ∈ 𝑀)
 
Theorembezout 16260* Bézout's identity: For any integers 𝐴 and 𝐵, there are integers 𝑥, 𝑦 such that (𝐴 gcd 𝐵) = 𝐴 · 𝑥 + 𝐵 · 𝑦. This is Metamath 100 proof #60. (Contributed by Mario Carneiro, 22-Feb-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
 
Theoremdvdsgcd 16261 An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 30-May-2014.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ (𝑀 gcd 𝑁)))
 
Theoremdvdsgcdb 16262 Biconditional form of dvdsgcd 16261. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾𝑁) ↔ 𝐾 ∥ (𝑀 gcd 𝑁)))
 
Theoremdfgcd2 16263* Alternate definition of the gcd operator, see definition in [ApostolNT] p. 15. (Contributed by AV, 8-Aug-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐷 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷))))
 
Theoremgcdass 16264 Associative law for gcd operator. Theorem 1.4(b) in [ApostolNT] p. 16. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = (𝑁 gcd (𝑀 gcd 𝑃)))
 
Theoremmulgcd 16265 Distribute multiplication by a nonnegative integer over gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 30-May-2014.)
((𝐾 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))
 
Theoremabsmulgcd 16266 Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (abs‘(𝐾 · (𝑀 gcd 𝑁))))
 
Theoremmulgcdr 16267 Reverse distribution law for the gcd operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 · 𝐶) gcd (𝐵 · 𝐶)) = ((𝐴 gcd 𝐵) · 𝐶))
 
Theoremgcddiv 16268 Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ (𝐶𝐴𝐶𝐵)) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))
 
TheoremgcdmultipleOLD 16269 Obsolete proof of gcdmultiple 16253 as of 12-Jan-2024. The GCD of a multiple of a number is the number itself. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
 
TheoremgcdmultiplezOLD 16270 Obsolete proof of gcdmultiplez 16252 as of 12-Jan-2024. Extend gcdmultiple 16253 so 𝑁 can be an integer. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
 
Theoremgcdzeq 16271 A positive integer 𝐴 is equal to its gcd with an integer 𝐵 if and only if 𝐴 divides 𝐵. Generalization of gcdeq 16272. (Contributed by AV, 1-Jul-2020.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))
 
Theoremgcdeq 16272 𝐴 is equal to its gcd with 𝐵 if and only if 𝐴 divides 𝐵. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by AV, 8-Aug-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))
 
Theoremdvdssqim 16273 Unidirectional form of dvdssq 16281. (Contributed by Scott Fenton, 19-Apr-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀↑2) ∥ (𝑁↑2)))
 
Theoremdvdsmulgcd 16274 A divisibility equivalent for odmulg 19172. (Contributed by Stefan O'Rear, 6-Sep-2015.)
((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
 
Theoremrpmulgcd 16275 If 𝐾 and 𝑀 are relatively prime, then the GCD of 𝐾 and 𝑀 · 𝑁 is the GCD of 𝐾 and 𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁))
 
Theoremrplpwr 16276 If 𝐴 and 𝐵 are relatively prime, then so are 𝐴𝑁 and 𝐵. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd 𝐵) = 1))
 
Theoremrprpwr 16277 If 𝐴 and 𝐵 are relatively prime, then so are 𝐴 and 𝐵𝑁. Originally a subproof of rppwr 16278. (Contributed by SN, 21-Aug-2024.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → (𝐴 gcd (𝐵𝑁)) = 1))
 
Theoremrppwr 16278 If 𝐴 and 𝐵 are relatively prime, then so are 𝐴𝑁 and 𝐵𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
 
Theoremsqgcd 16279 Square distributes over gcd. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2)))
 
Theoremdvdssqlem 16280 Lemma for dvdssq 16281. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
 
Theoremdvdssq 16281 Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
 
Theorembezoutr 16282 Partial converse to bezout 16260. Existence of a linear combination does not set the GCD, but it does upper bound it. (Contributed by Stefan O'Rear, 23-Sep-2014.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌)))
 
Theorembezoutr1 16283 Converse of bezout 16260 for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → (𝐴 gcd 𝐵) = 1))
 
6.1.9  Algorithms
 
Theoremnn0seqcvgd 16284* A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011.)
(𝜑𝐹:ℕ0⟶ℕ0)    &   (𝜑𝑁 = (𝐹‘0))    &   ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹𝑘)))       (𝜑 → (𝐹𝑁) = 0)
 
Theoremseq1st 16285 A sequence whose iteration function ignores the second argument is only affected by the first point of the initial value function. (Contributed by Mario Carneiro, 11-Feb-2015.)
𝑍 = (ℤ𝑀)    &   𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))       ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → 𝑅 = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))
 
Theoremalgr0 16286 The value of the algorithm iterator 𝑅 at 0 is the initial state 𝐴. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
𝑍 = (ℤ𝑀)    &   𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝑆)       (𝜑 → (𝑅𝑀) = 𝐴)
 
Theoremalgrf 16287 An algorithm is a step function 𝐹:𝑆𝑆 on a state space 𝑆. An algorithm acts on an initial state 𝐴𝑆 by iteratively applying 𝐹 to give 𝐴, (𝐹𝐴), (𝐹‘(𝐹𝐴)) and so on. An algorithm is said to halt if a fixed point of 𝐹 is reached after a finite number of iterations.

The algorithm iterator 𝑅:ℕ0𝑆 "runs" the algorithm 𝐹 so that (𝑅𝑘) is the state after 𝑘 iterations of 𝐹 on the initial state 𝐴.

Domain and codomain of the algorithm iterator 𝑅. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

𝑍 = (ℤ𝑀)    &   𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐹:𝑆𝑆)       (𝜑𝑅:𝑍𝑆)
 
Theoremalgrp1 16288 The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝑍 = (ℤ𝑀)    &   𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐹:𝑆𝑆)       ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))
 
Theoremalginv 16289* If 𝐼 is an invariant of 𝐹, then its value is unchanged after any number of iterations of 𝐹. (Contributed by Paul Chapman, 31-Mar-2011.)
𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))    &   𝐹:𝑆𝑆    &   (𝑥𝑆 → (𝐼‘(𝐹𝑥)) = (𝐼𝑥))       ((𝐴𝑆𝐾 ∈ ℕ0) → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))
 
Theoremalgcvg 16290* One way to prove that an algorithm halts is to construct a countdown function 𝐶:𝑆⟶ℕ0 whose value is guaranteed to decrease for each iteration of 𝐹 until it reaches 0. That is, if 𝑋𝑆 is not a fixed point of 𝐹, then (𝐶‘(𝐹𝑋)) < (𝐶𝑋).

If 𝐶 is a countdown function for algorithm 𝐹, the sequence (𝐶‘(𝑅𝑘)) reaches 0 after at most 𝑁 steps, where 𝑁 is the value of 𝐶 for the initial state 𝐴. (Contributed by Paul Chapman, 22-Jun-2011.)

𝐹:𝑆𝑆    &   𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))    &   𝐶:𝑆⟶ℕ0    &   (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))    &   𝑁 = (𝐶𝐴)       (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)
 
Theoremalgcvgblem 16291 Lemma for algcvgb 16292. (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0))))
 
Theoremalgcvgb 16292 Two ways of expressing that 𝐶 is a countdown function for algorithm 𝐹. The first is used in these theorems. The second states the condition more intuitively as a conjunction: if the countdown function's value is currently nonzero, it must decrease at the next step; if it has reached zero, it must remain zero at the next step. (Contributed by Paul Chapman, 31-Mar-2011.)
𝐹:𝑆𝑆    &   𝐶:𝑆⟶ℕ0       (𝑋𝑆 → (((𝐶‘(𝐹𝑋)) ≠ 0 → (𝐶‘(𝐹𝑋)) < (𝐶𝑋)) ↔ (((𝐶𝑋) ≠ 0 → (𝐶‘(𝐹𝑋)) < (𝐶𝑋)) ∧ ((𝐶𝑋) = 0 → (𝐶‘(𝐹𝑋)) = 0))))
 
Theoremalgcvga 16293* The countdown function 𝐶 remains 0 after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐹:𝑆𝑆    &   𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))    &   𝐶:𝑆⟶ℕ0    &   (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))    &   𝑁 = (𝐶𝐴)       (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝐾)) = 0))
 
Theoremalgfx 16294* If 𝐹 reaches a fixed point when the countdown function 𝐶 reaches 0, 𝐹 remains fixed after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐹:𝑆𝑆    &   𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))    &   𝐶:𝑆⟶ℕ0    &   (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))    &   𝑁 = (𝐶𝐴)    &   (𝑧𝑆 → ((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧))       (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁)))
 
6.1.10  Euclid's Algorithm
 
Theoremeucalgval2 16295* The value of the step function 𝐸 for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))       ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩))
 
Theoremeucalgval 16296* Euclid's Algorithm eucalg 16301 computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0.

The value of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))       (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
 
Theoremeucalgf 16297* Domain and codomain of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))       𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
 
Theoremeucalginv 16298* The invariant of the step function 𝐸 for Euclid's Algorithm is the gcd operator applied to the state. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))       (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸𝑋)) = ( gcd ‘𝑋))
 
Theoremeucalglt 16299* The second member of the state decreases with each iteration of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))       (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → (2nd ‘(𝐸𝑋)) < (2nd𝑋)))
 
Theoremeucalgcvga 16300* Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.)
𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))    &   𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))    &   𝑁 = (2nd𝐴)       (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ𝑁) → (2nd ‘(𝑅𝐾)) = 0))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >