| Metamath
Proof Explorer Theorem List (p. 163 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dvdsmultr2 16201 | If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ 𝑁 → 𝐾 ∥ (𝑀 · 𝑁))) | ||
| Theorem | dvdsmultr2d 16202 | Deduction form of dvdsmultr2 16201. (Contributed by SN, 23-Aug-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∥ (𝑀 · 𝑁)) | ||
| Theorem | ordvdsmul 16203 | If an integer divides either of two others, it divides their product. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∨ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 · 𝑁))) | ||
| Theorem | dvdssub2 16204 | If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 ↔ 𝐾 ∥ 𝑁)) | ||
| Theorem | dvdsadd 16205 | An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 13-Jul-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑀 + 𝑁))) | ||
| Theorem | dvdsaddr 16206 | An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑁 + 𝑀))) | ||
| Theorem | dvdssub 16207 | An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑀 − 𝑁))) | ||
| Theorem | dvdssubr 16208 | An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑁 − 𝑀))) | ||
| Theorem | dvdsadd2b 16209 | Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) | ||
| Theorem | dvdsaddre2b 16210 | Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 16209 only requiring 𝐵 to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) | ||
| Theorem | fsumdvds 16211* | If every term in a sum is divisible by 𝑁, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) ⇒ ⊢ (𝜑 → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | dvdslelem 16212 | Lemma for dvdsle 16213. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 < 𝑀 → (𝐾 · 𝑀) ≠ 𝑁) | ||
| Theorem | dvdsle 16213 | The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) | ||
| Theorem | dvdsleabs 16214 | The divisors of a nonzero integer are bounded by its absolute value. Theorem 1.1(i) in [ApostolNT] p. 14 (comparison property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 ∥ 𝑁 → 𝑀 ≤ (abs‘𝑁))) | ||
| Theorem | dvdsleabs2 16215 | Transfer divisibility to an order constraint on absolute values. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 ∥ 𝑁 → (abs‘𝑀) ≤ (abs‘𝑁))) | ||
| Theorem | dvdsabseq 16216 | If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.) |
| ⊢ ((𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀) → (abs‘𝑀) = (abs‘𝑁)) | ||
| Theorem | dvdseq 16217 | If two nonnegative integers divide each other, they must be equal. (Contributed by Mario Carneiro, 30-May-2014.) (Proof shortened by AV, 7-Aug-2021.) |
| ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀)) → 𝑀 = 𝑁) | ||
| Theorem | divconjdvds 16218 | If a nonzero integer 𝑀 divides another integer 𝑁, the other integer 𝑁 divided by the nonzero integer 𝑀 (i.e. the divisor conjugate of 𝑁 to 𝑀) divides the other integer 𝑁. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.) |
| ⊢ ((𝑀 ∥ 𝑁 ∧ 𝑀 ≠ 0) → (𝑁 / 𝑀) ∥ 𝑁) | ||
| Theorem | dvdsdivcl 16219* | The complement of a divisor of 𝑁 is also a divisor of 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | ||
| Theorem | dvdsflip 16220* | An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.) |
| ⊢ 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} & ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝑁 / 𝑦)) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐹:𝐴–1-1-onto→𝐴) | ||
| Theorem | dvdsssfz1 16221* | The set of divisors of a number is a subset of a finite set. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴} ⊆ (1...𝐴)) | ||
| Theorem | dvds1 16222 | The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015.) |
| ⊢ (𝑀 ∈ ℕ0 → (𝑀 ∥ 1 ↔ 𝑀 = 1)) | ||
| Theorem | alzdvds 16223* | Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0)) | ||
| Theorem | dvdsext 16224* | Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥))) | ||
| Theorem | fzm1ndvds 16225 | No number between 1 and 𝑀 − 1 divides 𝑀. (Contributed by Mario Carneiro, 24-Jan-2015.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀 ∥ 𝑁) | ||
| Theorem | fzo0dvdseq 16226 | Zero is the only one of the first 𝐴 nonnegative integers that is divisible by 𝐴. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) | ||
| Theorem | fzocongeq 16227 | Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | addmodlteqALT 16228 | Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq 13845 based on the "divides" relation. (Contributed by AV, 14-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
| Theorem | dvdsfac 16229 | A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.) |
| ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ∥ (!‘𝑁)) | ||
| Theorem | dvdsexp2im 16230 | If an integer divides another integer, then it also divides any of its powers. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 ∥ 𝑀 → 𝐾 ∥ (𝑀↑𝑁))) | ||
| Theorem | dvdsexp 16231 | A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∥ (𝐴↑𝑁)) | ||
| Theorem | dvdsmod 16232 | Any number 𝐾 whose mod base 𝑁 is divisible by a divisor 𝑃 of the base is also divisible by 𝑃. This means that primes will also be relatively prime to the base when reduced mod 𝑁 for any base. (Contributed by Mario Carneiro, 13-Mar-2014.) |
| ⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃 ∥ 𝐾)) | ||
| Theorem | mulmoddvds 16233 | If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.) (Proof shortened by AV, 18-Mar-2022.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0)) | ||
| Theorem | 3dvds 16234* | A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0...𝑁)⟶ℤ) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹‘𝑘) · (;10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘))) | ||
| Theorem | 3dvdsdec 16235 | A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = ;𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) | ||
| Theorem | 3dvds2dec 16236 | A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴, 𝐵 and 𝐶 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴, 𝐵 and 𝐶. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 ⇒ ⊢ (3 ∥ ;;𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶)) | ||
| Theorem | fprodfvdvdsd 16237* | A finite product of integers is divisible by any of its factors being function values. (Contributed by AV, 1-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐹:𝐵⟶ℤ) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘)) | ||
| Theorem | fproddvdsd 16238* | A finite product of integers is divisible by any of its factors. (Contributed by AV, 14-Aug-2020.) (Proof shortened by AV, 2-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℤ) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∥ ∏𝑘 ∈ 𝐴 𝑘) | ||
The set ℤ of integers can be partitioned into the set of even numbers and the set of odd numbers, see zeo4 16241. Instead of defining new class variables Even and Odd to represent these sets, we use the idiom 2 ∥ 𝑁 to say that "𝑁 is even" (which implies 𝑁 ∈ ℤ, see evenelz 16239) and ¬ 2 ∥ 𝑁 to say that "𝑁 is odd" (under the assumption that 𝑁 ∈ ℤ). The previously proven theorems about even and odd numbers, like zneo 12548, zeo 12551, zeo2 12552, etc. use different representations, which are equivalent to the representations using the divides relation, see evend2 16260 and oddp1d2 16261. The corresponding theorems are zeneo 16242, zeo3 16240 and zeo4 16241. | ||
| Theorem | evenelz 16239 | An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 16160. (Contributed by AV, 22-Jun-2021.) |
| ⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) | ||
| Theorem | zeo3 16240 | An integer is even or odd. With this representation of even and odd integers, this variant of zeo 12551 follows immediately from the law of excluded middle, see exmidd 895. (Contributed by AV, 17-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)) | ||
| Theorem | zeo4 16241 | An integer is even or odd but not both. With this representation of even and odd integers, this variant of zeo2 12552 follows immediately from the principle of double negation, see notnotb 315. (Contributed by AV, 17-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ¬ ¬ 2 ∥ 𝑁)) | ||
| Theorem | zeneo 16242 | No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. This variant of zneo 12548 follows immediately from the fact that a contradiction implies anything, see pm2.21i 119. (Contributed by AV, 22-Jun-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → 𝐴 ≠ 𝐵)) | ||
| Theorem | odd2np1lem 16243* | Lemma for odd2np1 16244. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)) | ||
| Theorem | odd2np1 16244* | An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | ||
| Theorem | even2n 16245* | An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.) |
| ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) | ||
| Theorem | oddm1even 16246 | An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1))) | ||
| Theorem | oddp1even 16247 | An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1))) | ||
| Theorem | oexpneg 16248 | The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | ||
| Theorem | mod2eq0even 16249 | An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ 2 ∥ 𝑁)) | ||
| Theorem | mod2eq1n2dvds 16250 | An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.) (Proof shortened by AV, 5-Jul-2020.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) | ||
| Theorem | oddnn02np1 16251* | A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁)) | ||
| Theorem | oddge22np1 16252* | An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.) (Proof shortened by AV, 9-Jul-2022.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁)) | ||
| Theorem | evennn02n 16253* | A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁)) | ||
| Theorem | evennn2n 16254* | A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.) |
| ⊢ (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁)) | ||
| Theorem | 2tp1odd 16255 | A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵) | ||
| Theorem | mulsucdiv2z 16256 | An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ) | ||
| Theorem | sqoddm1div8z 16257 | A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (((𝑁↑2) − 1) / 8) ∈ ℤ) | ||
| Theorem | 2teven 16258 | A number which is twice an integer is even. (Contributed by AV, 16-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = (2 · 𝐴)) → 2 ∥ 𝐵) | ||
| Theorem | zeo5 16259 | An integer is either even or odd, version of zeo3 16240 avoiding the negation of the representation of an odd number. (Proposed by BJ, 21-Jun-2021.) (Contributed by AV, 26-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ 2 ∥ (𝑁 + 1))) | ||
| Theorem | evend2 16260 | An integer is even iff its quotient with 2 is an integer. This is a representation of even numbers without using the divides relation, see zeo 12551 and zeo2 12552. (Contributed by AV, 22-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ)) | ||
| Theorem | oddp1d2 16261 | An integer is odd iff its successor divided by 2 is an integer. This is a representation of odd numbers without using the divides relation, see zeo 12551 and zeo2 12552. (Contributed by AV, 22-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) | ||
| Theorem | zob 16262 | Alternate characterizations of an odd number. (Contributed by AV, 7-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ)) | ||
| Theorem | oddm1d2 16263 | An integer is odd iff its predecessor divided by 2 is an integer. This is another representation of odd numbers without using the divides relation. (Contributed by AV, 18-Jun-2021.) (Proof shortened by AV, 22-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℤ)) | ||
| Theorem | ltoddhalfle 16264 | An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))) | ||
| Theorem | halfleoddlt 16265 | An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)) | ||
| Theorem | opoe 16266 | The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵)) | ||
| Theorem | omoe 16267 | The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 − 𝐵)) | ||
| Theorem | opeo 16268 | The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 + 𝐵)) | ||
| Theorem | omeo 16269 | The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 − 𝐵)) | ||
| Theorem | z0even 16270 | 2 divides 0. That means 0 is even. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 23-Jun-2021.) |
| ⊢ 2 ∥ 0 | ||
| Theorem | n2dvds1 16271 | 2 does not divide 1. That means 1 is odd. (Contributed by David A. Wheeler, 8-Dec-2018.) (Proof shortened by Steven Nguyen, 3-May-2023.) |
| ⊢ ¬ 2 ∥ 1 | ||
| Theorem | n2dvdsm1 16272 | 2 does not divide -1. That means -1 is odd. (Contributed by AV, 15-Aug-2021.) |
| ⊢ ¬ 2 ∥ -1 | ||
| Theorem | z2even 16273 | 2 divides 2. That means 2 is even. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 23-Jun-2021.) |
| ⊢ 2 ∥ 2 | ||
| Theorem | n2dvds3 16274 | 2 does not divide 3. That means 3 is odd. (Contributed by AV, 28-Feb-2021.) (Proof shortened by Steven Nguyen, 3-May-2023.) |
| ⊢ ¬ 2 ∥ 3 | ||
| Theorem | z4even 16275 | 2 divides 4. That means 4 is even. (Contributed by AV, 23-Jul-2020.) (Revised by AV, 4-Jul-2021.) |
| ⊢ 2 ∥ 4 | ||
| Theorem | 4dvdseven 16276 | An integer which is divisible by 4 is divisible by 2, that is, is even. (Contributed by AV, 4-Jul-2021.) |
| ⊢ (4 ∥ 𝑁 → 2 ∥ 𝑁) | ||
| Theorem | m1expe 16277 | Exponentiation of -1 by an even power. Variant of m1expeven 14008. (Contributed by AV, 25-Jun-2021.) |
| ⊢ (2 ∥ 𝑁 → (-1↑𝑁) = 1) | ||
| Theorem | m1expo 16278 | Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) | ||
| Theorem | m1exp1 16279 | Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁)) | ||
| Theorem | nn0enne 16280 | A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ)) | ||
| Theorem | nn0ehalf 16281 | The half of an even nonnegative integer is a nonnegative integer. (Contributed by AV, 22-Jun-2020.) (Revised by AV, 28-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ0) | ||
| Theorem | nnehalf 16282 | The half of an even positive integer is a positive integer. (Contributed by AV, 28-Jun-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ) | ||
| Theorem | nn0onn 16283 | An odd nonnegative integer is positive. (Contributed by Steven Nguyen, 25-Mar-2023.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ) | ||
| Theorem | nn0o1gt2 16284 | An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁)) | ||
| Theorem | nno 16285 | An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ) | ||
| Theorem | nn0o 16286 | An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) | ||
| Theorem | nn0ob 16287 | Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
| Theorem | nn0oddm1d2 16288 | A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
| Theorem | nnoddm1d2 16289 | A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
| ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ)) | ||
| Theorem | sumeven 16290* | If every term in a sum is even, then so is the sum. (Contributed by AV, 14-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 2 ∥ 𝐵) ⇒ ⊢ (𝜑 → 2 ∥ Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | sumodd 16291* | If every term in a sum is odd, then the sum is even iff the number of terms in the sum is even. (Contributed by AV, 14-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 2 ∥ 𝐵) ⇒ ⊢ (𝜑 → (2 ∥ (♯‘𝐴) ↔ 2 ∥ Σ𝑘 ∈ 𝐴 𝐵)) | ||
| Theorem | evensumodd 16292* | If every term in a sum with an even number of terms is odd, then the sum is even. (Contributed by AV, 14-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 2 ∥ 𝐵) & ⊢ (𝜑 → 2 ∥ (♯‘𝐴)) ⇒ ⊢ (𝜑 → 2 ∥ Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | oddsumodd 16293* | If every term in a sum with an odd number of terms is odd, then the sum is odd. (Contributed by AV, 14-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 2 ∥ 𝐵) & ⊢ (𝜑 → ¬ 2 ∥ (♯‘𝐴)) ⇒ ⊢ (𝜑 → ¬ 2 ∥ Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | pwp1fsum 16294* | The n-th power of a number increased by 1 expressed by a product with a finite sum. (Contributed by AV, 15-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (((-1↑(𝑁 − 1)) · (𝐴↑𝑁)) + 1) = ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑𝑘)))) | ||
| Theorem | oddpwp1fsum 16295* | An odd power of a number increased by 1 expressed by a product with a finite sum. (Contributed by AV, 15-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) + 1) = ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑𝑘)))) | ||
| Theorem | divalglem0 16296 | Lemma for divalg 16306. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ ⇒ ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))))) | ||
| Theorem | divalglem1 16297 | Lemma for divalg 16306. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 ⇒ ⊢ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))) | ||
| Theorem | divalglem2 16298* | Lemma for divalg 16306. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} ⇒ ⊢ inf(𝑆, ℝ, < ) ∈ 𝑆 | ||
| Theorem | divalglem4 16299* | Lemma for divalg 16306. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} ⇒ ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} | ||
| Theorem | divalglem5 16300* | Lemma for divalg 16306. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} & ⊢ 𝑅 = inf(𝑆, ℝ, < ) ⇒ ⊢ (0 ≤ 𝑅 ∧ 𝑅 < (abs‘𝐷)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |