MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo2 Structured version   Visualization version   GIF version

Theorem zeo2 12337
Description: An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
zeo2 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))

Proof of Theorem zeo2
StepHypRef Expression
1 zcn 12254 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 peano2cn 11077 . . . . . 6 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
31, 2syl 17 . . . . 5 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℂ)
4 2cnd 11981 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℂ)
5 2ne0 12007 . . . . . 6 2 ≠ 0
65a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ≠ 0)
73, 4, 6divcan2d 11683 . . . 4 (𝑁 ∈ ℤ → (2 · ((𝑁 + 1) / 2)) = (𝑁 + 1))
81, 4, 6divcan2d 11683 . . . . 5 (𝑁 ∈ ℤ → (2 · (𝑁 / 2)) = 𝑁)
98oveq1d 7270 . . . 4 (𝑁 ∈ ℤ → ((2 · (𝑁 / 2)) + 1) = (𝑁 + 1))
107, 9eqtr4d 2781 . . 3 (𝑁 ∈ ℤ → (2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1))
11 zneo 12333 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))
1211expcom 413 . . . 4 ((𝑁 / 2) ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1)))
1312necon2bd 2958 . . 3 ((𝑁 / 2) ∈ ℤ → ((2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1) → ¬ ((𝑁 + 1) / 2) ∈ ℤ))
1410, 13syl5com 31 . 2 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ → ¬ ((𝑁 + 1) / 2) ∈ ℤ))
15 zeo 12336 . . . 4 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
1615ord 860 . . 3 (𝑁 ∈ ℤ → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
1716con1d 145 . 2 (𝑁 ∈ ℤ → (¬ ((𝑁 + 1) / 2) ∈ ℤ → (𝑁 / 2) ∈ ℤ))
1814, 17impbid 211 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wcel 2108  wne 2942  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   / cdiv 11562  2c2 11958  cz 12249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250
This theorem is referenced by:  zesq  13869  oddfl  42705  evennodd  44983  oddneven  44984  dignn0flhalflem1  45849
  Copyright terms: Public domain W3C validator