MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo2 Structured version   Visualization version   GIF version

Theorem zeo2 12621
Description: An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
zeo2 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))

Proof of Theorem zeo2
StepHypRef Expression
1 zcn 12534 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 peano2cn 11346 . . . . . 6 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
31, 2syl 17 . . . . 5 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℂ)
4 2cnd 12264 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℂ)
5 2ne0 12290 . . . . . 6 2 ≠ 0
65a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ≠ 0)
73, 4, 6divcan2d 11960 . . . 4 (𝑁 ∈ ℤ → (2 · ((𝑁 + 1) / 2)) = (𝑁 + 1))
81, 4, 6divcan2d 11960 . . . . 5 (𝑁 ∈ ℤ → (2 · (𝑁 / 2)) = 𝑁)
98oveq1d 7402 . . . 4 (𝑁 ∈ ℤ → ((2 · (𝑁 / 2)) + 1) = (𝑁 + 1))
107, 9eqtr4d 2767 . . 3 (𝑁 ∈ ℤ → (2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1))
11 zneo 12617 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))
1211expcom 413 . . . 4 ((𝑁 / 2) ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1)))
1312necon2bd 2941 . . 3 ((𝑁 / 2) ∈ ℤ → ((2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1) → ¬ ((𝑁 + 1) / 2) ∈ ℤ))
1410, 13syl5com 31 . 2 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ → ¬ ((𝑁 + 1) / 2) ∈ ℤ))
15 zeo 12620 . . . 4 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
1615ord 864 . . 3 (𝑁 ∈ ℤ → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
1716con1d 145 . 2 (𝑁 ∈ ℤ → (¬ ((𝑁 + 1) / 2) ∈ ℤ → (𝑁 / 2) ∈ ℤ))
1814, 17impbid 212 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   / cdiv 11835  2c2 12241  cz 12529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530
This theorem is referenced by:  zesq  14191  oddfl  45276  evennodd  47644  oddneven  47645  dignn0flhalflem1  48604
  Copyright terms: Public domain W3C validator