![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zeo2 | Structured version Visualization version GIF version |
Description: An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
zeo2 | ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 11834 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | peano2cn 10659 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℂ) |
4 | 2cnd 11563 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
5 | 2ne0 11589 | . . . . . 6 ⊢ 2 ≠ 0 | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ≠ 0) |
7 | 3, 4, 6 | divcan2d 11266 | . . . 4 ⊢ (𝑁 ∈ ℤ → (2 · ((𝑁 + 1) / 2)) = (𝑁 + 1)) |
8 | 1, 4, 6 | divcan2d 11266 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · (𝑁 / 2)) = 𝑁) |
9 | 8 | oveq1d 7031 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((2 · (𝑁 / 2)) + 1) = (𝑁 + 1)) |
10 | 7, 9 | eqtr4d 2834 | . . 3 ⊢ (𝑁 ∈ ℤ → (2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1)) |
11 | zneo 11914 | . . . . 5 ⊢ ((((𝑁 + 1) / 2) ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1)) | |
12 | 11 | expcom 414 | . . . 4 ⊢ ((𝑁 / 2) ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))) |
13 | 12 | necon2bd 3000 | . . 3 ⊢ ((𝑁 / 2) ∈ ℤ → ((2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1) → ¬ ((𝑁 + 1) / 2) ∈ ℤ)) |
14 | 10, 13 | syl5com 31 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ → ¬ ((𝑁 + 1) / 2) ∈ ℤ)) |
15 | zeo 11917 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)) | |
16 | 15 | ord 859 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ)) |
17 | 16 | con1d 147 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ ((𝑁 + 1) / 2) ∈ ℤ → (𝑁 / 2) ∈ ℤ)) |
18 | 14, 17 | impbid 213 | 1 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 (class class class)co 7016 ℂcc 10381 0cc0 10383 1c1 10384 + caddc 10386 · cmul 10388 / cdiv 11145 2c2 11540 ℤcz 11829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-n0 11746 df-z 11830 |
This theorem is referenced by: zesq 13437 oddfl 41103 evennodd 43310 oddneven 43311 dignn0flhalflem1 44176 |
Copyright terms: Public domain | W3C validator |