| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > 2eu1 | Unicode version | ||
| Description: Double existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one. (Contributed by NM, 3-Dec-2001.) | 
| Ref | Expression | 
|---|---|
| 2eu1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eu5 2242 | 
. . . . . . . 8
 | |
| 2 | eu5 2242 | 
. . . . . . . . . 10
 | |
| 3 | 2 | exbii 1582 | 
. . . . . . . . 9
 | 
| 4 | 2 | mobii 2240 | 
. . . . . . . . 9
 | 
| 5 | 3, 4 | anbi12i 678 | 
. . . . . . . 8
 | 
| 6 | 1, 5 | bitri 240 | 
. . . . . . 7
 | 
| 7 | 6 | simprbi 450 | 
. . . . . 6
 | 
| 8 | sp 1747 | 
. . . . . . . . . . . 12
 | |
| 9 | 8 | anim2i 552 | 
. . . . . . . . . . 11
 | 
| 10 | 9 | ancoms 439 | 
. . . . . . . . . 10
 | 
| 11 | 10 | moimi 2251 | 
. . . . . . . . 9
 | 
| 12 | nfa1 1788 | 
. . . . . . . . . 10
 | |
| 13 | 12 | moanim 2260 | 
. . . . . . . . 9
 | 
| 14 | 11, 13 | sylib 188 | 
. . . . . . . 8
 | 
| 15 | 14 | ancrd 537 | 
. . . . . . 7
 | 
| 16 | 2moswap 2279 | 
. . . . . . . . 9
 | |
| 17 | 16 | com12 27 | 
. . . . . . . 8
 | 
| 18 | 17 | imdistani 671 | 
. . . . . . 7
 | 
| 19 | 15, 18 | syl6 29 | 
. . . . . 6
 | 
| 20 | 7, 19 | syl 15 | 
. . . . 5
 | 
| 21 | 2eu2ex 2278 | 
. . . . . 6
 | |
| 22 | excom 1741 | 
. . . . . . 7
 | |
| 23 | 21, 22 | sylib 188 | 
. . . . . 6
 | 
| 24 | 21, 23 | jca 518 | 
. . . . 5
 | 
| 25 | 20, 24 | jctild 527 | 
. . . 4
 | 
| 26 | eu5 2242 | 
. . . . . 6
 | |
| 27 | eu5 2242 | 
. . . . . 6
 | |
| 28 | 26, 27 | anbi12i 678 | 
. . . . 5
 | 
| 29 | an4 797 | 
. . . . 5
 | |
| 30 | 28, 29 | bitri 240 | 
. . . 4
 | 
| 31 | 25, 30 | syl6ibr 218 | 
. . 3
 | 
| 32 | 31 | com12 27 | 
. 2
 | 
| 33 | 2exeu 2281 | 
. 2
 | |
| 34 | 32, 33 | impbid1 194 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 | 
| This theorem is referenced by: 2eu2 2285 2eu3 2286 2eu5 2288 | 
| Copyright terms: Public domain | W3C validator |