New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2eu1 | Unicode version |
Description: Double existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one. (Contributed by NM, 3-Dec-2001.) |
Ref | Expression |
---|---|
2eu1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu5 2242 | . . . . . . . 8 | |
2 | eu5 2242 | . . . . . . . . . 10 | |
3 | 2 | exbii 1582 | . . . . . . . . 9 |
4 | 2 | mobii 2240 | . . . . . . . . 9 |
5 | 3, 4 | anbi12i 678 | . . . . . . . 8 |
6 | 1, 5 | bitri 240 | . . . . . . 7 |
7 | 6 | simprbi 450 | . . . . . 6 |
8 | sp 1747 | . . . . . . . . . . . 12 | |
9 | 8 | anim2i 552 | . . . . . . . . . . 11 |
10 | 9 | ancoms 439 | . . . . . . . . . 10 |
11 | 10 | moimi 2251 | . . . . . . . . 9 |
12 | nfa1 1788 | . . . . . . . . . 10 | |
13 | 12 | moanim 2260 | . . . . . . . . 9 |
14 | 11, 13 | sylib 188 | . . . . . . . 8 |
15 | 14 | ancrd 537 | . . . . . . 7 |
16 | 2moswap 2279 | . . . . . . . . 9 | |
17 | 16 | com12 27 | . . . . . . . 8 |
18 | 17 | imdistani 671 | . . . . . . 7 |
19 | 15, 18 | syl6 29 | . . . . . 6 |
20 | 7, 19 | syl 15 | . . . . 5 |
21 | 2eu2ex 2278 | . . . . . 6 | |
22 | excom 1741 | . . . . . . 7 | |
23 | 21, 22 | sylib 188 | . . . . . 6 |
24 | 21, 23 | jca 518 | . . . . 5 |
25 | 20, 24 | jctild 527 | . . . 4 |
26 | eu5 2242 | . . . . . 6 | |
27 | eu5 2242 | . . . . . 6 | |
28 | 26, 27 | anbi12i 678 | . . . . 5 |
29 | an4 797 | . . . . 5 | |
30 | 28, 29 | bitri 240 | . . . 4 |
31 | 25, 30 | syl6ibr 218 | . . 3 |
32 | 31 | com12 27 | . 2 |
33 | 2exeu 2281 | . 2 | |
34 | 32, 33 | impbid1 194 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 wex 1541 weu 2204 wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: 2eu2 2285 2eu3 2286 2eu5 2288 |
Copyright terms: Public domain | W3C validator |