| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 2eu1 | Unicode version | ||
| Description: Double existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one. (Contributed by NM, 3-Dec-2001.) |
| Ref | Expression |
|---|---|
| 2eu1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu5 2242 |
. . . . . . . 8
| |
| 2 | eu5 2242 |
. . . . . . . . . 10
| |
| 3 | 2 | exbii 1582 |
. . . . . . . . 9
|
| 4 | 2 | mobii 2240 |
. . . . . . . . 9
|
| 5 | 3, 4 | anbi12i 678 |
. . . . . . . 8
|
| 6 | 1, 5 | bitri 240 |
. . . . . . 7
|
| 7 | 6 | simprbi 450 |
. . . . . 6
|
| 8 | sp 1747 |
. . . . . . . . . . . 12
| |
| 9 | 8 | anim2i 552 |
. . . . . . . . . . 11
|
| 10 | 9 | ancoms 439 |
. . . . . . . . . 10
|
| 11 | 10 | moimi 2251 |
. . . . . . . . 9
|
| 12 | nfa1 1788 |
. . . . . . . . . 10
| |
| 13 | 12 | moanim 2260 |
. . . . . . . . 9
|
| 14 | 11, 13 | sylib 188 |
. . . . . . . 8
|
| 15 | 14 | ancrd 537 |
. . . . . . 7
|
| 16 | 2moswap 2279 |
. . . . . . . . 9
| |
| 17 | 16 | com12 27 |
. . . . . . . 8
|
| 18 | 17 | imdistani 671 |
. . . . . . 7
|
| 19 | 15, 18 | syl6 29 |
. . . . . 6
|
| 20 | 7, 19 | syl 15 |
. . . . 5
|
| 21 | 2eu2ex 2278 |
. . . . . 6
| |
| 22 | excom 1741 |
. . . . . . 7
| |
| 23 | 21, 22 | sylib 188 |
. . . . . 6
|
| 24 | 21, 23 | jca 518 |
. . . . 5
|
| 25 | 20, 24 | jctild 527 |
. . . 4
|
| 26 | eu5 2242 |
. . . . . 6
| |
| 27 | eu5 2242 |
. . . . . 6
| |
| 28 | 26, 27 | anbi12i 678 |
. . . . 5
|
| 29 | an4 797 |
. . . . 5
| |
| 30 | 28, 29 | bitri 240 |
. . . 4
|
| 31 | 25, 30 | syl6ibr 218 |
. . 3
|
| 32 | 31 | com12 27 |
. 2
|
| 33 | 2exeu 2281 |
. 2
| |
| 34 | 32, 33 | impbid1 194 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
| This theorem is referenced by: 2eu2 2285 2eu3 2286 2eu5 2288 |
| Copyright terms: Public domain | W3C validator |