New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2eu3 | Unicode version |
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.) |
Ref | Expression |
---|---|
2eu3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmo1 2215 | . . . . 5 | |
2 | 1 | 19.31 1876 | . . . 4 |
3 | 2 | albii 1566 | . . 3 |
4 | nfmo1 2215 | . . . . 5 | |
5 | 4 | nfal 1842 | . . . 4 |
6 | 5 | 19.32 1875 | . . 3 |
7 | 3, 6 | bitri 240 | . 2 |
8 | 2eu1 2284 | . . . . . . 7 | |
9 | 8 | biimpd 198 | . . . . . 6 |
10 | ancom 437 | . . . . . 6 | |
11 | 9, 10 | syl6ib 217 | . . . . 5 |
12 | 11 | adantld 453 | . . . 4 |
13 | 2eu1 2284 | . . . . . 6 | |
14 | 13 | biimpd 198 | . . . . 5 |
15 | 14 | adantrd 454 | . . . 4 |
16 | 12, 15 | jaoi 368 | . . 3 |
17 | 2exeu 2281 | . . . 4 | |
18 | 2exeu 2281 | . . . . 5 | |
19 | 18 | ancoms 439 | . . . 4 |
20 | 17, 19 | jca 518 | . . 3 |
21 | 16, 20 | impbid1 194 | . 2 |
22 | 7, 21 | sylbi 187 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wo 357 wa 358 wal 1540 wex 1541 weu 2204 wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |