![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > sylib | Unicode version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sylib.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylib.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylib |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylib.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylib.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | biimpi 186 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl 15 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bicomd 192 pm5.74d 238 bitri 240 3imtr3i 256 ord 366 orcomd 377 ancomd 438 pm4.71d 615 pm4.71rd 616 pm5.32d 620 imdistand 673 pclem6 896 3mix3 1126 ecase23d 1285 nic-ax 1438 nexdh 1589 exlimivOLD 1698 exlimd 1806 cbv3hv 1850 excomimOLD 1858 sbequi 2059 sbn 2062 spsbe 2075 spsbbi 2077 sb6rf 2091 sb9i 2094 eu2 2229 2euex 2276 2eu1 2284 eqcomd 2358 3eltr3g 2435 abbid 2466 neneqd 2532 syl5eqner 2541 3netr3g 2544 necon1bi 2559 necon4ai 2575 necon4i 2576 necomd 2599 r19.21bi 2712 nrexdv 2717 rexlimd 2735 rabbidva 2850 elisset 2869 euind 3023 rmoan 3034 reuind 3039 spsbc 3058 spesbc 3127 3sstr3g 3311 syl6sseq 3317 un00 3586 disjpss 3601 pssnel 3615 difprsn1 3847 diftpsn3 3849 difsnid 3854 ssunsn2 3865 sneqr 3872 unsneqsn 3887 intab 3956 uniintsn 3963 iinrab2 4029 riinn0 4040 rintn0 4056 preqr1 4124 preq12b 4127 iotanul 4354 iotacl 4362 dfiota4 4372 0nelsuc 4400 nnsucelrlem3 4426 nnsucelrlem4 4427 nndisjeq 4429 prepeano4 4451 ltfinirr 4457 lenltfin 4469 ssfin 4470 vfinnc 4471 ncfinlower 4483 nnpw1ex 4484 tfinltfin 4501 evenodddisj 4516 nnadjoin 4520 tfinnn 4534 sfinltfin 4535 sfin111 4536 vfinncvntsp 4549 vfinspsslem1 4550 vfinspeqtncv 4553 nulnnn 4556 phialllem1 4616 opeqex 4621 3brtr3g 4670 opeliunxp2 4822 rexxpf 4828 brel 4830 dmxp 4923 resopab2 5001 ndmima 5025 dmsnopss 5067 funeu 5131 funeu2 5132 funcnvuni 5161 imadif 5171 fneu2 5188 f00 5249 foconst 5280 foimacnv 5303 resdif 5306 resin 5307 f1ococnv2 5309 fv3 5341 dff3 5420 fsn 5432 fnressn 5438 isores1 5494 swapf1o 5511 resoprab2 5582 funoprabg 5583 fnmpt 5689 fmpt 5692 fmptd 5694 fnmpt2 5732 trtxp 5781 oqelins4 5794 qrpprod 5836 frds 5935 erth 5968 erdisj 5972 elqsn0 5993 mapsn 6026 fundmen 6043 enadjlem1 6059 enadj 6060 enpw1 6062 enprmaplem5 6080 nenpw1pwlem2 6085 mucnc 6131 ncdisjun 6136 peano4nc 6150 ncssfin 6151 ncspw1eu 6159 nntccl 6170 fnce 6176 ce0nnuli 6178 ce0addcnnul 6179 sbthlem1 6203 sbth 6206 dflec3 6221 0lt1c 6258 nmembers1lem2 6269 nncdiv3 6277 spacssnc 6284 nchoicelem12 6300 nchoicelem14 6302 nchoicelem17 6305 frecxp 6314 |
Copyright terms: Public domain | W3C validator |