New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2reu5lem3 | Unicode version |
Description: Lemma for 2reu5 3045. This lemma is interesting in its own right, showing that existential restriction in the last conjunct (the "at most one" part) is optional; compare rmo2 3132. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
Ref | Expression |
---|---|
2reu5lem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2reu5lem1 3042 | . . 3 | |
2 | 2reu5lem2 3043 | . . 3 | |
3 | 1, 2 | anbi12i 678 | . 2 |
4 | 2eu5 2288 | . 2 | |
5 | 3anass 938 | . . . . . . 7 | |
6 | 5 | exbii 1582 | . . . . . 6 |
7 | 19.42v 1905 | . . . . . 6 | |
8 | df-rex 2621 | . . . . . . . 8 | |
9 | 8 | bicomi 193 | . . . . . . 7 |
10 | 9 | anbi2i 675 | . . . . . 6 |
11 | 6, 7, 10 | 3bitri 262 | . . . . 5 |
12 | 11 | exbii 1582 | . . . 4 |
13 | df-rex 2621 | . . . 4 | |
14 | 12, 13 | bitr4i 243 | . . 3 |
15 | 3anan12 947 | . . . . . . . . . . 11 | |
16 | 15 | imbi1i 315 | . . . . . . . . . 10 |
17 | impexp 433 | . . . . . . . . . 10 | |
18 | impexp 433 | . . . . . . . . . . 11 | |
19 | 18 | imbi2i 303 | . . . . . . . . . 10 |
20 | 16, 17, 19 | 3bitri 262 | . . . . . . . . 9 |
21 | 20 | albii 1566 | . . . . . . . 8 |
22 | df-ral 2620 | . . . . . . . 8 | |
23 | r19.21v 2702 | . . . . . . . 8 | |
24 | 21, 22, 23 | 3bitr2i 264 | . . . . . . 7 |
25 | 24 | albii 1566 | . . . . . 6 |
26 | df-ral 2620 | . . . . . 6 | |
27 | 25, 26 | bitr4i 243 | . . . . 5 |
28 | 27 | exbii 1582 | . . . 4 |
29 | 28 | exbii 1582 | . . 3 |
30 | 14, 29 | anbi12i 678 | . 2 |
31 | 3, 4, 30 | 3bitri 262 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 w3a 934 wal 1540 wex 1541 wcel 1710 weu 2204 wmo 2205 wral 2615 wrex 2616 wreu 2617 wrmo 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 |
This theorem is referenced by: 2reu5 3045 |
Copyright terms: Public domain | W3C validator |