New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2reu5 | Unicode version |
Description: Double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification, analogous to 2eu5 2288 and reu3 3027. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
Ref | Expression |
---|---|
2reu5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29r 2756 | . . . . . . . 8 | |
2 | r19.29r 2756 | . . . . . . . . 9 | |
3 | 2 | reximi 2722 | . . . . . . . 8 |
4 | pm3.35 570 | . . . . . . . . . . 11 | |
5 | 4 | reximi 2722 | . . . . . . . . . 10 |
6 | 5 | reximi 2722 | . . . . . . . . 9 |
7 | eleq1 2413 | . . . . . . . . . . . . . 14 | |
8 | eleq1 2413 | . . . . . . . . . . . . . 14 | |
9 | 7, 8 | bi2anan9 843 | . . . . . . . . . . . . 13 |
10 | 9 | biimpac 472 | . . . . . . . . . . . 12 |
11 | 10 | ancomd 438 | . . . . . . . . . . 11 |
12 | 11 | ex 423 | . . . . . . . . . 10 |
13 | 12 | rexlimivv 2744 | . . . . . . . . 9 |
14 | 6, 13 | syl 15 | . . . . . . . 8 |
15 | 1, 3, 14 | 3syl 18 | . . . . . . 7 |
16 | 15 | ex 423 | . . . . . 6 |
17 | 16 | pm4.71rd 616 | . . . . 5 |
18 | anass 630 | . . . . 5 | |
19 | 17, 18 | syl6bb 252 | . . . 4 |
20 | 19 | 2exbidv 1628 | . . 3 |
21 | 20 | pm5.32i 618 | . 2 |
22 | 2reu5lem3 3044 | . 2 | |
23 | df-rex 2621 | . . . 4 | |
24 | r19.42v 2766 | . . . . . 6 | |
25 | df-rex 2621 | . . . . . 6 | |
26 | 24, 25 | bitr3i 242 | . . . . 5 |
27 | 26 | exbii 1582 | . . . 4 |
28 | 23, 27 | bitri 240 | . . 3 |
29 | 28 | anbi2i 675 | . 2 |
30 | 21, 22, 29 | 3bitr4i 268 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wex 1541 wcel 1710 wral 2615 wrex 2616 wreu 2617 wrmo 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-cleq 2346 df-clel 2349 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |