NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  2reuswap Unicode version

Theorem 2reuswap 3039
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
2reuswap
Distinct variable groups:   ,,   ,
Allowed substitution hints:   (,)   ()

Proof of Theorem 2reuswap
StepHypRef Expression
1 df-rmo 2623 . . 3
21ralbii 2639 . 2
3 df-ral 2620 . . . 4
4 moanimv 2262 . . . . 5
54albii 1566 . . . 4
63, 5bitr4i 243 . . 3
7 2euswap 2280 . . . 4
8 df-reu 2622 . . . . 5
9 r19.42v 2766 . . . . . . . 8
10 df-rex 2621 . . . . . . . 8
119, 10bitr3i 242 . . . . . . 7
12 an12 772 . . . . . . . 8
1312exbii 1582 . . . . . . 7
1411, 13bitri 240 . . . . . 6
1514eubii 2213 . . . . 5
168, 15bitri 240 . . . 4
17 df-reu 2622 . . . . 5
18 r19.42v 2766 . . . . . . 7
19 df-rex 2621 . . . . . . 7
2018, 19bitr3i 242 . . . . . 6
2120eubii 2213 . . . . 5
2217, 21bitri 240 . . . 4
237, 16, 223imtr4g 261 . . 3
246, 23sylbi 187 . 2
252, 24sylbi 187 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358  wal 1540  wex 1541   wcel 1710  weu 2204  wmo 2205  wral 2615  wrex 2616  wreu 2617  wrmo 2618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator