NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  2reuswap GIF version

Theorem 2reuswap 3039
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
2reuswap (x A ∃*y B φ → (∃!x A y B φ∃!y B x A φ))
Distinct variable groups:   x,y,A   x,B
Allowed substitution hints:   φ(x,y)   B(y)

Proof of Theorem 2reuswap
StepHypRef Expression
1 df-rmo 2623 . . 3 (∃*y B φ∃*y(y B φ))
21ralbii 2639 . 2 (x A ∃*y B φx A ∃*y(y B φ))
3 df-ral 2620 . . . 4 (x A ∃*y(y B φ) ↔ x(x A∃*y(y B φ)))
4 moanimv 2262 . . . . 5 (∃*y(x A (y B φ)) ↔ (x A∃*y(y B φ)))
54albii 1566 . . . 4 (x∃*y(x A (y B φ)) ↔ x(x A∃*y(y B φ)))
63, 5bitr4i 243 . . 3 (x A ∃*y(y B φ) ↔ x∃*y(x A (y B φ)))
7 2euswap 2280 . . . 4 (x∃*y(x A (y B φ)) → (∃!xy(x A (y B φ)) → ∃!yx(x A (y B φ))))
8 df-reu 2622 . . . . 5 (∃!x A y B φ∃!x(x A y B φ))
9 r19.42v 2766 . . . . . . . 8 (y B (x A φ) ↔ (x A y B φ))
10 df-rex 2621 . . . . . . . 8 (y B (x A φ) ↔ y(y B (x A φ)))
119, 10bitr3i 242 . . . . . . 7 ((x A y B φ) ↔ y(y B (x A φ)))
12 an12 772 . . . . . . . 8 ((y B (x A φ)) ↔ (x A (y B φ)))
1312exbii 1582 . . . . . . 7 (y(y B (x A φ)) ↔ y(x A (y B φ)))
1411, 13bitri 240 . . . . . 6 ((x A y B φ) ↔ y(x A (y B φ)))
1514eubii 2213 . . . . 5 (∃!x(x A y B φ) ↔ ∃!xy(x A (y B φ)))
168, 15bitri 240 . . . 4 (∃!x A y B φ∃!xy(x A (y B φ)))
17 df-reu 2622 . . . . 5 (∃!y B x A φ∃!y(y B x A φ))
18 r19.42v 2766 . . . . . . 7 (x A (y B φ) ↔ (y B x A φ))
19 df-rex 2621 . . . . . . 7 (x A (y B φ) ↔ x(x A (y B φ)))
2018, 19bitr3i 242 . . . . . 6 ((y B x A φ) ↔ x(x A (y B φ)))
2120eubii 2213 . . . . 5 (∃!y(y B x A φ) ↔ ∃!yx(x A (y B φ)))
2217, 21bitri 240 . . . 4 (∃!y B x A φ∃!yx(x A (y B φ)))
237, 16, 223imtr4g 261 . . 3 (x∃*y(x A (y B φ)) → (∃!x A y B φ∃!y B x A φ))
246, 23sylbi 187 . 2 (x A ∃*y(y B φ) → (∃!x A y B φ∃!y B x A φ))
252, 24sylbi 187 1 (x A ∃*y B φ → (∃!x A y B φ∃!y B x A φ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wal 1540  wex 1541   wcel 1710  ∃!weu 2204  ∃*wmo 2205  wral 2615  wrex 2616  ∃!wreu 2617  ∃*wrmo 2618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator