New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > breq | Unicode version |
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
breq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2414 | . 2 | |
2 | df-br 4640 | . 2 | |
3 | df-br 4640 | . 2 | |
4 | 1, 2, 3 | 3bitr4g 279 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wceq 1642 wcel 1710 cop 4561 class class class wbr 4639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 df-br 4640 |
This theorem is referenced by: breqi 4645 breqd 4650 imaeq1 4937 fveq1 5327 isoeq2 5483 isoeq3 5484 clos1basesucg 5884 trd 5921 frd 5922 extd 5923 symd 5924 trrd 5925 refrd 5926 refd 5927 antird 5928 antid 5929 connexrd 5930 connexd 5931 iserd 5942 |
Copyright terms: Public domain | W3C validator |