New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > breq | Unicode version |
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
breq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2414 | . 2 | |
2 | df-br 4641 | . 2 | |
3 | df-br 4641 | . 2 | |
4 | 1, 2, 3 | 3bitr4g 279 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wceq 1642 wcel 1710 cop 4562 class class class wbr 4640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 df-br 4641 |
This theorem is referenced by: breqi 4646 breqd 4651 imaeq1 4938 fveq1 5328 isoeq2 5484 isoeq3 5485 clos1basesucg 5885 trd 5922 frd 5923 extd 5924 symd 5925 trrd 5926 refrd 5927 refd 5928 antird 5929 antid 5930 connexrd 5931 connexd 5932 iserd 5943 |
Copyright terms: Public domain | W3C validator |