New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imaeq1 | Unicode version |
Description: Equality theorem for image. (Contributed by set.mm contributors, 14-Aug-1994.) |
Ref | Expression |
---|---|
imaeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 4642 | . . . 4 | |
2 | 1 | rexbidv 2636 | . . 3 |
3 | 2 | abbidv 2468 | . 2 |
4 | df-ima 4728 | . 2 | |
5 | df-ima 4728 | . 2 | |
6 | 3, 4, 5 | 3eqtr4g 2410 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wceq 1642 cab 2339 wrex 2616 class class class wbr 4640 cima 4723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-rex 2621 df-br 4641 df-ima 4728 |
This theorem is referenced by: imaeq1i 4940 imaeq1d 4942 rneq 4957 f1imacnv 5303 clos1eq2 5876 eceq2 5964 |
Copyright terms: Public domain | W3C validator |