NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  breq GIF version

Theorem breq 4642
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.)
Assertion
Ref Expression
breq (R = S → (ARBASB))

Proof of Theorem breq
StepHypRef Expression
1 eleq2 2414 . 2 (R = S → (A, B RA, B S))
2 df-br 4641 . 2 (ARBA, B R)
3 df-br 4641 . 2 (ASBA, B S)
41, 2, 33bitr4g 279 1 (R = S → (ARBASB))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642   wcel 1710  cop 4562   class class class wbr 4640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-clel 2349  df-br 4641
This theorem is referenced by:  breqi  4646  breqd  4651  imaeq1  4938  fveq1  5328  isoeq2  5484  isoeq3  5485  clos1basesucg  5885  trd  5922  frd  5923  extd  5924  symd  5925  trrd  5926  refrd  5927  refd  5928  antird  5929  antid  5930  connexrd  5931  connexd  5932  iserd  5943
  Copyright terms: Public domain W3C validator