New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eleq2 | Unicode version |
Description: Equality implies equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2347 | . . . . . 6 | |
2 | 1 | biimpi 186 | . . . . 5 |
3 | 2 | 19.21bi 1758 | . . . 4 |
4 | 3 | anbi2d 684 | . . 3 |
5 | 4 | exbidv 1626 | . 2 |
6 | df-clel 2349 | . 2 | |
7 | df-clel 2349 | . 2 | |
8 | 5, 6, 7 | 3bitr4g 279 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 wex 1541 wceq 1642 wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: eleq12 2415 eleq2i 2417 eleq2d 2420 nelneq2 2452 dvelimdc 2509 nelne1 2605 neleq2 2608 raleqf 2803 rexeqf 2804 reueq1f 2805 rmoeq1f 2806 rabeqf 2852 clel3g 2976 clel4 2978 sbcel2gv 3106 sbnfc2 3196 nineq1 3234 uneq1 3411 ineq1 3450 unineq 3505 n0i 3555 disjel 3597 elif 3696 sneqr 3872 unsneqsn 3887 elunii 3896 eluniab 3903 ssuni 3913 elinti 3935 elintab 3937 intss1 3941 intmin 3946 intab 3956 iineq2 3986 dfiin2g 4000 preqr1 4124 preq12b 4127 opkth1g 4130 eluni1g 4172 cnvkeq 4215 ins2keq 4218 ins3keq 4219 imakeq1 4224 sikeq 4241 unipw1 4325 eqpw1uni 4330 pw1eqadj 4332 dfnnc2 4395 0cnsuc 4401 peano5 4409 0fin 4423 nnsucelr 4428 nndisjeq 4429 snfi 4431 ssfin 4470 vfinnc 4471 ncfinprop 4474 ncfineleq 4477 ncfinraise 4481 ncfinlower 4483 nnpw1ex 4484 tfinprop 4489 nnadjoin 4520 nnpweq 4523 sfineq1 4526 sfineq2 4527 sfinltfin 4535 spfininduct 4540 vfin1cltv 4547 vfinspsslem1 4550 phi11lem1 4595 phi011lem1 4598 proj1op 4600 proj2op 4601 breq 4641 epelc 4765 xpeq1 4798 xpeq2 4799 fnasrn 5417 f1oiso 5499 ndmovg 5613 mpt2eq123 5661 clos1basesucg 5884 erth 5968 elqsn0 5993 eqncg 6126 ncseqnc 6128 peano4nc 6150 2p1e3c 6156 nntccl 6170 ovce 6172 dflec3 6221 ncfin 6247 addcdi 6250 ncvsq 6256 0lt1c 6258 nmembers1lem1 6268 |
Copyright terms: Public domain | W3C validator |